Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY ME Semester –III Examination Dec. - 2011

Subject code: 730704 Date: 08/12/2011

Subject Name: Advanced Electrical Drives

Time: 10.30 am – 01.00 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Support your answers with proper diagrams.
- Q.1 (a) Explain the basics construction of Brushless DC motor. Also explain 07 how BLDC motor rotates.
 - **(b)** Obtain the expression of torque in terms of Flux Linkages and d-q **07** currents for Synchronous Rotating reference frame.
- Q.2 (a) Describe difference between scalar and vector control method of 07 electrical drive. Also explain the vector control principal for AC motor drive.
 - (b) Explain the Inverter Control strategy to run BLDC motor.
 Only prepare lookup table to run BLDC motor in clockwise and anticlockwise direction.

OR

- **(b)** Develop the mathematical model of Induction Motor in arbitrary **07** reference frame.
- Q.3 (a) Explain the indirect vector control of Induction motor with open loop 07 flux control. Explain the each block in detail.
 - **(b)** Explain the Optical Encoder to sense the rotor position of Permanent **07** Magnet Synchronous Motor.

OR

- Q.3 (a) Enlist methods of flux vector estimation in direct vector control and 07 discuss the current model in detail.
 - (b) Draw the block diagram of sensorless vector control of PMSM. And 07 explain the operation of this in detail.
- **Q.4** (a) The transformation Ks is used to transform the variables f_{abc} to F_{dq0} in or arbitrary reference frame. Prove that $(Ks)^T = (Ks)^{-1}$. The transformation matrix Ks is given as below.

$$\sqrt{\frac{2}{3}} \begin{bmatrix} \cos\theta & \cos\left(\theta - \frac{2\pi}{3}\right) & \cos\left(\theta + \frac{2\pi}{3}\right) \\ \sin\theta & \sin\left(\theta - \frac{2\pi}{3}\right) & \sin\left(\theta - \frac{2\pi}{3}\right) \\ 1/\sqrt{2} & 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

1

	(b)	Draw the inductance profile of Switched Reluctance Motor. Explain the each step of this profile in detail.	07
		OR	
Q.4	(a)	Explain the space vector theory for AC machine.	07
	(b)	Show different Converters for Switched Reluctance Motor Drives and	07
		explain freewheeling and regeneration capability converter in detail.	
Q.5	(a)	Derive winding inductance and voltage equations for three phase	07
	. ,	symmetrical induction motor.	
	(b)	Write a short not on Linear Induction Motor.	07
		OR	
Q.5	(a)	Discuss the vector control strategies for Synchronous Motor.	07
	(b)	Write a short note on Hysteresis Motor.	07
