GUJARAT TECHNOLOGICAL UNIVERSITY ME SEMESTER – I EXAMINATION – SUMMER 2017

	Code: 2710002 Date:08/05/202		
	1. 2. 3.	i v	
Q.1	(a)	(I)Solve $y' + 6x^2 y = \frac{e^{-2x^3}}{x^2}$	07
		(II)Find $L(t \cdot \sin wt)$	
	(b)	(I)Solve by Gauss Elimination Method:	07
		x + 2y + z = 3	
		2x + 3y + 3z = 10	
		3x - y + 2z = 13	
		(II)Find the Fourier cosine Integral of $f(x) = e^{-kx}$, where $x > 0, k > 0$	
Q.2	(a)	Solve $y''' + 3y'' + 3y' + y = 8e^{-x} + x + 3$ using Undetermined Coefficient Method	07
	(b)	Solve $x^2 y'' - 4xy' + 6y = 21 x^{-4}$ using Variation of Parameter Method. OR	07
	(b)	Assuming that one in 80 birds is a case of twins, calculate the probability of 2 or more sets of twins on a day when 30 birds occur. Compare the result obtain by using (I) Binomial Distribution (II) Poisson Approximation.	07
Q.3	(a)	(I)State Convolution Theorem and use it to find $L^{-1}\left\{\frac{1}{s(s^2+4)}\right\}$	07
		(II) $L^{-1}\left(\frac{s^3+2s^2+2}{s^3(s^2+1)}\right)$	
	(b)	Define Partial pivoting. Solve the following system of equations using Gauss –	07
		Seidel iteration: x + y + 54 z = 110	
		27 x + 6 y - z = 85	
		6x + 15y + 2z = 72	
		OR	
Q.3	(a)	State Green's Theorem for Circulation curl. And use it to evaluate	07
		$\iint_{c} (6y + x) dx + (y + 2x) dy \text{ where C:The circle } (x - 2)^{2} + (y - 3)^{2} = 4$	
	(b)	Check whether the set V of all pairs of real numbers of the form $(1, x)$ with the	07
		operations defined as $(1, y) + (1, y') = (1, y + y')$ and $k(1, y) = (1, ky)$ is a vector space or not.	

Q.4 (a) Find Fourier series for the function f(x) given by

1

07

$$f(x) = \begin{cases} 1 + \frac{2x}{\pi}; & -\pi \le x < 0\\ 1 - \frac{2x}{\pi}; & 0 \le x \le \pi \end{cases}$$

(b) Solve two Dimensional steady state heat equation where boundary conditions 07 are,

$$u(0, y) = u(L, y) = u(x, 0) = 0$$
, $u(x, a) = \sin\left(\frac{n\pi x}{L}\right)$

OR

Q.4 (a) From the data given below about the treatment of 500 patients suffering from a disease state whether the new treatment is superior to the conventional treatment.

		No. of patients					
	Favourable	Not Favourable	Total				
New	280	60	340				
Conventional	120	40	160				
Total	400	100	500				
(Given for $(V - 1, X^2 - 3, 84)$)							

(Given for $(V = 1, X_{0.05}^2 = 3.84)$)

- (b) Find the stead state oscillation of the mass-spring system governed by $\frac{d^2 y}{dx^2} + 3\frac{dy}{dx} + 2y = 20\cos 2t$
- **Q.5** (a) Use Runge- Kutta method of order 4, Compute y(0.1), y(0.2) given that 07

 $\frac{dy}{dx} = xy + y^2$; y(0)=1, Taking h=0.1 . Continue the solution at x=0.3 Using Milne's Method.

(b) Find the dominant eigen value of $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ by power method & hence find the other eigen Value also. Verify your results by any other matrix theory. OR

(a)	a) The corresponding values of x and y are given by the following table							
	Х	87.5	84.0	77.8	63.7	46.7	36.9	
	y	292	283	270	235	197	181	

Fit a parabola of the form $y = a + bx + cx^2$ by the method of group averages.

(b) Evaluate $\int_{-2}^{2} \frac{3x}{(4+x)^2} dx$ using

Q.5

- (I) Trapezoidal rule
- (II) Simpson's 1/3rd rule
- (III) Simpson's 3/8 rule

07

07