GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER I - EXAMINATION – SUMMER 2017

Subject Code: 2710710 Subject Name: Applied Linear Algebra Time: 02:30 pm to 05:00 pm **Instructions:**

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- (a) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear operator defined by the formula $T(x_{1,x_2,x_3}) =$ 0.1 07 $(3x_1 + x_2, -2x_1 - 4x_2 + 3x_3, 5x_1 + 4x_2 - 2x_3)$ Determine the whether T is one to one, if so, find $T^{-1}(x_1, x_2, x_3)$ 07
 - (b) State and prove rank nullity theorem
- Q.2 (a) (1) Express the vector v = (6,11,6) as a linear combination of $v_1 = (2,1,4)$, 07 $v_2 = (1, -1, 3)$ and $v_3 = (3, 2, 5)$ (2) Determine whether the following set of vectors form a basis for \mathbb{R}^3 . (1, 1, 1), (1, 2, 3), (2, -1, 1)
 - (b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be multiplication by A. Determine whether T has an inverse. If 07 so, find $T^{-1}\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right)$ where $A = \begin{bmatrix} 1 & 4 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 0 \end{bmatrix}$

OR

(b) Determine whether the following functions are linear transformation : 07 (1) $T: M_{mn} \to M_{nm}$, where $T(X) = X^T$ (2) $T: M_{22} \to R, T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a^2 + b^2$ 07

(a) If $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by **Q.3** $T\left(\begin{bmatrix} x_1\\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_2\\ -5x_1 + 13x_2\\ -7x_2 + 16x \end{bmatrix}$

Find the matrix of the transformation T with respect to the bases $B = \{u_1, u_2\}$

for R^2 and $B' = \{v_1, v_2, v_3\}$ for R^3 , where $u_1 = \begin{bmatrix} 3\\1 \end{bmatrix}, u_2 = \begin{bmatrix} 5\\2 \end{bmatrix}, v_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, v_2 = \begin{bmatrix} -1\\2\\2 \end{bmatrix}, v_3 = \begin{bmatrix} 0\\1\\2 \end{bmatrix}$

(b) Apply the power method to the following symmetric matrix to obtain the 07 dominant eigen value by taking the initial approximation as $x_0 = [1 \ 1 \ 1]^T$

[0.49	0.02	ן 0.22
0.02	0.28	0.20
L0.22	0.20	0.040

Date:08/05/2017

Total Marks: 70

Enrolment No.

Q.3	(a)	Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation given by the formula $T(x_1, x_2, x_3, x_4) = (4x_1 + x_2 - 2x_3 - 3x_4, 2x_1 + x_2 + x_3 - 4x_4, 6x_1 - 9x_3 + 9x_4)$ (1) Find a basis for ker(T).	07
	(b)	(1) Find a basis for R(T). (2) Find a basis for R(T). Verify cayley-Hamiton theorem for the following matrix and hence, find A^{-1} . $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$	07
Q.4	(a)	Find an orthogonal matrix P that diagonalizes $A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix}$	07
	(b)	The vector space R^3 with the Euclidean inner product. Apply the Gram-Schmidt process to transform the basis vectros $u_1 = (1, 1, 1), u_2 = (0, 1, 1), u_3 = (0, 0, 1)$ into an orthogonal basis $\{v_1, v_2, v_3\}$. OR	07
Q.4	(a)	 Define diagonalize of matrix A. Prove that if A is an n × n matrix, then the following are quivalent. (1) A is diagonalizable. (2) A has a linearly independent eigenvectors. 	07
	(b)	Find the minimal polynomial of $A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$	07
Q.5	(a)	 Define the following terms : Orthogonal matrix Proper and improper orthogonal matrix Unitary matrix Irreducible polynomial Annihilating polynomial Minimum polynomial 	07
	(b)	Find the Jordan canonical forms of A $\begin{bmatrix} -3 & 5 & 3 \\ -7 & 9 & 4 \\ 4 & -4 & 0 \end{bmatrix}$	07
Q.5	(a)	OR Solve the following system by Gauss-Jordan elimination method: $x_1 + x_2 + 2x_3 = 8, -x_1 - 2x_2 + 3x_3 = 1, 3x_1 - 7x_2 + 4x_3 = 10$	07
	(b)	Solve the following equation using Crout't method 2x + y + 4z = 12 8x - 3y + 2z = 20 4x + 11y - z = 33	07
