Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER I - EXAMINATION – SUMMER 2017

Subject Code: 2711103 Subject Name: Advanced Fluid Mechanics Time:02:30 pm to 05:00 pm Instructions: 1. Attempt all questions.			Date:10/05/2017 Total Marks: 70	
		:02:30 pm to 05:00 pm Total Marks: 7		
		 Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 		
Q.1	(a)	How do the Langrangian and Eulerian methods differ? Explain path line and streak line.	07	
	(b)	Distinguish between: (i) uniform and non uniform flow (ii) laminar and turbulent flow	07	
Q.2	(a)	Define the continuity equation. Obtain an expression for continuity equation for a 3-D flow.	07	
	(b)	Describe the use and limitations of the flow nets. Under what conditions can one draw flow net?	07	
	(b)	OR What do you understand by the terms: total acceleration, convective acceleration and local acceleration?	07	
Q.3	(a)	Explain with sketch the following flow patterns: (i) Source and Sink (ii) Source and sink pair (iii) Doublet.	07	
	(b)	Derive from first principles, the condition for irrotational flow. Prove that, for potential flow, both the stream function and velocity potential function satisfy the Laplace equation.	07	
		OR		
Q.3	(a)	Derive the Navier-Stokes equation for viscous compressible fluid with constant viscosity.	07	
	(b)	Write a short note on Principle of Superposition.	07	
Q.4	(a) (b)	Define and compare Creeping flows and Nonviscous Flows. Derive an expression for shear stress on the basis of Prandtl's Mixing Length theory	07 07	
		OR		
Q.4	(a) (b)	Obtain an expression for velocity distribution for turbulent flow in smooth pipes. Explain the Reynolds theory of turbulence.	07 07	
Q.5	(a)	In a compressible flow through a convergent divergent nozzle, explain with the aid of sketches how the mass rate of flow and pressure vary along the nozzle axis.	07	
	(b)	Establish relation between maximum velocity and critical velocity of sound.	07	

(a) Distinguish between (i) attached and detached shocks and (ii) compression and

(b) Derive the basic differential for isothermal flow in long ducts.

Q.5

expansion shocks.

07

07