	Enrol	lment	No.	
--	-------	-------	-----	--

GUJARAT TECHNOLOGICAL UNIVERSITY ME SEMESTER II EXAMINATION – SUMMER 2017

Sı	ıbjec	et Name: MODERN CONTROL SYSTEMS	Date: 25/05/2017			
	structi 1 2		U			
Q.1	(a)	Represent the following differential equation in controllable canonical form and obseravable canonical form. $\ddot{y} + 4\ddot{y} + 5\dot{y} + 2y = 2\ddot{u} + \ddot{u} + 5\dot{u} + 2u$, Where y and u are output and input of the system respectively.				
	(b)	Explain significant of eigen values. Prove that the eigen values of a matrix are invariant under linear transformation.	07			
Q.2	 (a) What is the controllability of the system? Derive the equaion for the state control and output controllability of the continuous time system. (b) Consider the following state equation and output equation : 					
		$ \begin{bmatrix} \dot{x1} \\ \dot{x2} \\ \dot{x3} \end{bmatrix} = \begin{bmatrix} -6 & 1 & 0 \\ -11 & 0 & 1 \\ -6 & 0 & 0 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} + \begin{bmatrix} 2 \\ 6 \\ 2 \end{bmatrix} \mathbf{u} ; \mathbf{y} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} $				
		Show that the state equation can be transformed into the following form by use of a proper transformation matrix: $\begin{bmatrix} z^1 \\ z^2 \\ z^3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -6 \\ 1 & 0 & -11 \\ 0 & 1 & -6 \end{bmatrix} \begin{bmatrix} z^1 \\ 22 \\ 33 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u$ then obtain the output				

y in terms of z_1 , z_2 , z_3 .

OR

(b) Calculate the response of the system with a given initial condition of the state.

$\dot{x1}$		[0	0	-27		[0]	
$\dot{x2}$	=	0	1	0	and $x(0) =$	1	
$\dot{x3}$		1	0	3	and $x(0) =$		

Q.3 (a) Determine the state feedback gain matrix k using Ackermann's formula of the **07** the plant is given by

 $\begin{bmatrix} \dot{x1} \\ \dot{x2} \\ \dot{x3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, The system uses the state feedback control u = -kx, let us choose the desired closed loop poles at $s = -2 \pm j4$ and s = -10.

(b) Explain the Krasovskii's theorem for the determination of asymptotic stability 07 for the given closed loop control system.

07

Q.3 (a) Is the system completely state controllable and completely observable?

$$\begin{bmatrix} \dot{x1} \\ \dot{x2} \\ \dot{x3} \end{bmatrix} = \begin{bmatrix} -1 & -2 & -2 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \mathbf{u} \quad ; \quad \mathbf{y} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix}$$

- (b) Discuss the necessary and sufficient condition for arbitrary pole placement. Also07 discuss the direct subsitution method for determination of matrix K.
- Q.4 (a) Explain the describing functions method for non linear system stability analysis.
 (b) Define the Sylvester's criterion for checking the definiteness and also check the definiteness of the following functions

 V(x) = x₁² + 2x₂²
 V(x) = 10x₁² + 4x₂² + x₃² + 2x₁x₂ 2x₂x₃ 4x₁x₃

OR

- Q.4 (a) Using the Lyapunov equation, determine the stability range of the gain K for the 07 following state space model of the system.
 - $\begin{bmatrix} \dot{x1} \\ \dot{x2} \\ \dot{x3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -2 & 1 \\ -K & 0 & -1 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ K \end{bmatrix} r,$
 - (b) Explain how the Phase plane method is useful in determining the behaviour of 07 Nonlinear systems.

Q.5 (a) Consider the system

 $A = \begin{bmatrix} 0 & 20.6 \\ 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \end{bmatrix}$, design a full order state observer, assume that the desired eigen values of the observer matrix are $\mu_1 = -10, \mu_2 = -10$

(b) Develop the block diagram of observed state feedback control system and derive the transfer function of the observer based controller.

OR

Q.5 (a) Determine the optimal feedback gain matrix K such that the following performance index 07 is minimized:

 $J = \int_0^\infty (X^T Q X + u^2) dt \text{ where } Q = \begin{bmatrix} 1 & 0 \\ 0 & \mu \end{bmatrix} \quad (\mu \ge 0), \text{ the state equation of the}$ plant $\dot{x} = Ax + Bu$ where, $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

(b) Derive the reduced matrix Riccati equation for quadratic optimal regulator 07 problem.

07

07