Seat No.:	Enrolment No.

Subject Code: 2720720

GUJARAT TECHNOLOGICAL UNIVERSITY

ME SEMESTER II EXAMINATION – SUMMER 2017

Date: 30/05/2017

	•	Name: Power System Transients 2:30 PM to 05:00 PM Total Marks:	70
Inst	1. 2. 3.	Attempt all questions.	
Q.1	(a)	List out the sources of transients. Explain how transients affect the power	07
	(b)	system? Explain transient response of system with series and shunt lumped parameters and distributed lines.	07
Q.2	(a)	With suitable example give steps involved in the construction of Bewelly's lattice diagram.	07
	(b)	What do you mean by the terms reflection and refraction? Derive the equations for reflection and refraction co-efficient.	07
	(b)	With neat diagram, wave forms and necessary equations, explain double frequency transient in a power system	07
Q.3	(a)	Explain lightning discharge mechanism with necessary diagrams. Also explain briefly the effect of tower footing resistance on lightning discharge.	07
	(b)	Explain the load switching and capacitor switching transients. OR	07
Q.3	(a) (b)	Develop the electromagnet model for lightning discharge without shield wires in detail. Explain the development stages of lighting flash with neat sketch.	07 07
Q.4	(a) (b)	Digital computation is required to analyze power system transients – Justify. Write short note on EMPT for transient computation. OR	07 07
Q.4	(a)	Outline the concept of EMPT.	07
	(b)	Write short note on hybrid program.	07
Q.5	(a)	What is meant by insulation coordination? How are the protective devices chosen for optimal insulation in a power system?	07
	(b)	Explain the importance of switching overvoltage in EHV power systems. How is protection against overvoltage achieved? OR	07
Q.5	(a) (b)	Write short note on ground wire for the protection of overhead lines. With suitable illustration, explain how insulation level is chosen for various equipment in a 230/132 kV substation.	07 07
