Enro	lment	No.	

GUJARAT TECHNOLOGICAL UNIVERSITY ME SEMESTER II EXAMINATION – SUMMER 2017

Subject Code: 2720911 Date: 29/0 Subject Name: Tribology		5/2017		
Ti	Time:02:30 PM to 05:00 PM Total Mark		s: 70	
Ins	2.	ons: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	Discuss the physical significance of various terms of Reynolds equation used for the hydrodynamic lubrication.	07	
	(b)	Show that in an infinite width tapered pad bearing of length L , the pressure is	07	
		maximum at a distance of $\frac{nL}{n+1}$ from the leading edge.		
Q.2	(a)	Derive the expression for the pressure distribution in entry zone of the Rayleigh step bearing.	07	
	(b)		07	
	(b)	OR Discuss various methods for measuring the coefficient of friction and explain any two in detail.	07	
Q.3	(a) (b)	Derive the Stribeck equation for basic static capacity of ball bearing. Explain Archard's theory of adhesive wear. OR	07 07	
Q.3	(a)	Explain equivalent dynamic load for bearing under cyclic loading.	07	
0.4	(b)	Explain various types of minor wears.	07	
Q.4	(a)	Discuss various methods for measuring the coefficient of friction and explain any two in detail.	07	
	(b)	Derive the Stribeck equation for basic static capacity of bearing. OR	07	
Q.4	(a)	Using modified adhesion theory of friction, show that the coefficient of friction due to adhesion is	07	
		$f_a = \frac{k}{\left(1 - k^2\right)^{1/2}}$		
	(b)	Explain the following friction measurement methods	07	

- (1) Inclined plane rig
- (2) Pin on disk rig
- Q.5 (a) Explain performance analysis of gear in terms of (1) fatigue failure mode (2) 07 wear mode and (3) lubrication mode.
 - (b) Derive the expression for the pressure distribution in aerostatic step bearing. 07OR
- Q.5 (a) A fixed pad hydrodynamic thrust bearing of length L and width B has a fluid 07 film shape given by relation $h = h_0 e^{-ax}$ where h_0 is minimum fluid-film thickness and a is constant. Determine the height h_m where the pressure distribution is maximum.
 - (b) Explain various tribological problems faced by industries.