Seat No.:	Enrolment No
-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

ME SEMESTER II EXAMINATION – SUMMER 2017

Subject Code: 2722106		e: 2722106 Date:2	Date:29/05/2017	
Subject	Nan	ne: Computational Fluid Dynamics		
Time:02:30 PM to 05:00 PM Instructions:		<u>-</u>	Total Marks: 70	
1.		empt all questions.		
1. 2				
3	. Make suitable assumptions wherever necessary.. Figures to the right indicate full marks.			
J.	rigi	ires to the right mulcate run marks.		
Q.1	(a)	What is CFD? How does a CFD code works?	07	
	(b)	Give classification of quasi linear partial differential equation. (Cramer's Ru	le) 07	
Q.2	(a)	By using Taylor's series expansion derive	07	
		Second order central second difference Second order central difference for mixed derivatives.		
	(b)	 Second order central difference for mixed derivatives. Derive 	07	
	(0)		07	
		$\left(\frac{\partial^2 u}{\partial x^2}\right)_{i,j} = \frac{-u_{i+2,j} + 16u_{i+1,j} - 30u_{i,j} + 16u_{i-1,j} - u_{i-2,j}}{12\Delta x^2} + O(\Delta x)^4$		
		OR		
	(b)	Derive (one sided)	07	
		$\left(\frac{\partial u}{\partial x}\right)_{i,j} = \frac{1}{6\Delta y} \left(-11u_{i,j} + 18u_{i,j+1} - 9u_{i,j+2} + 2u_{i,j+3}\right) + O(\Delta x)^{3}$		
Q.3	(a)	Write short note on Adaptive Grids	07	
	(b)	Explain Lax Wandroff Technique in brief	07	
		OR	22.02	
Q.3		Explain Maccormack's Technique in brief	07	
	(0)	Show that the pressure correction formula is a central difference formulation Poisson's equation for the pressure correction.	n of 07	
Q.4	(a)	Explain Finite Volume Method for one dimensional steady state conduction	07	
	(b)			
		one – dimensional domain sketched in Figure – 1. The boundary conditions		
		$\emptyset_O - 1$ at $x = 0$ and $\emptyset_L = 0$ at $x = L$ using five equally spaced cells and		
		central differencing scheme for convection and diffusion, calculate distribution of \emptyset as a function of x for (i) Case -1 $u = 0.1$ m/s and (ii) Case		
		u = 2.5 m/s		
		OR		
Q.4	(a)	Consider the problem of source free heat conduction in an insulated rod wh		
		ends are maintained at constant temperatures of 100°C and 500°C respective	ely.	
		The one-dimensional problem sketched in Figure – 2 is governed by $\frac{d}{dt} \left(\frac{dT}{dt} \right)$		
		$\frac{d}{dx}\left(k\frac{dT}{dx}\right) = 0$		
		Calculate the steady state temperature distribution in the road. Then	mal	
		conductivity k equals 1000 W/mK, cross – sectional area A is 0.001 m ²		
	(b)	Explain One Dimensional Upwind difference scheme for Conduction Convection problem.	n – 07	
Q.5			07	
	(b)	(1) Discuss Implicit methods are unconditionally stable.	07	
		(2) Disadvantage of Implicit approach.		

Q.5 (a) Explain Staggered grid 07
(b) Explain Quadratic Upstream Interpolation for Convective Kinetics 07

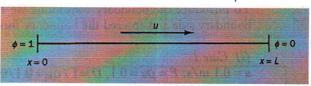


Figure – 1

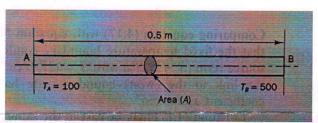


Figure – 2