Seat No.:	
-----------	--

Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY

ME – II SEMESTER • EXAMINATION – SUMMER 2017

•	•	Code: 2724707 Date: 30/05/20)17
•	e:02	Name: Mechatronics Signal Processing 2:30 PM to 05:00 PM Total Marks:	70
	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q:1		What is an IIR filter? Compare its characteristics with an FIR filter. Explain the different steps used in design of IIR filters from analog IIR filters.	14
Q:2 Q:2	(a) (b)	Explain the concept of envelope analysis with suitable example. How will you sample a continuous bandpass signal (B = 5 MHz) that is centred about some frequency ($f_c = 20 \text{ MHz}$)? OR	07 07
Q:2	(b)	Find the position of poles, zeros, region of convergence and Z transform for the following: 1. $x(n) = (0.3)^n u(n) + (-0.2)^n u(n)$ 2. $x(n) = -(0.6)^n u(-n-1) + (-0.5)^n u(n)$	03 04
Q:3		Compute the circular convolution between following sequences using DFT and IDFT method: $x(n) = \{1,2,3,4\}$ and $y(n) = \{-1,-2,-3,-4\}$	14
Q:3	(a)	The impulse response of a linear time invariant system is $h(n) = \begin{cases} 1 & -2 \le n \le 2 \\ 0 & \text{elsewhere} \end{cases}$ Determine the response of a FIR filter to the input signal $x(n) = \begin{cases} \frac{n}{3} & 0 \le n \le 6 \\ 0 & \text{elsewhere} \end{cases}$	07
Q:3	(b)	Compute the circular convolution of signals $x_1(n) = \{2,1,2,1\}$ and $x_2(n) = \{1,2,3,4\}$ through linear convolution.	07
Q:4	(a)	What do you understand by discrete time systems? Explain different discrete time systems with suitable examples.	07
Q:4	(b)	If $X(k) = \{2, 1+j, 0, 1-j\}$, find the periodic signal $x(n)$ with $N = 4$.	07
		OR	
Q:4	(a)	Find the inverse transform of $H(Z) = \frac{z}{3z^2 - 4z + 1}$, if the region of	07

	(b)	convergence are (a) $ z > 1$ (b) $ z < 1/3$ (c) $1/3 < z < 1$ Compute DFT of sequence of $x(n) = \{1,0,1,0,1\}$ and verify symmetry property.	07
Q:5		If the $x(n) = \{3,1,5,4,2,1,0,1\}$, find the $X(k)$ by using decimation in frequency FFT algorithm.	14
		OR	
Q:5	(a)	Design high pass FIR filter for $N=4$ and $\omega_c=1.5$ rad. Use rectangular and Hamming window.	07
Q:5	(b)	Explain application and importance of digital signal processing in at least four different field of engineering.	07
