Seat No.: _____ Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

Subject Code: 2730502

Instructions:

Time: 02:30 pm to 05:00 pm

1. Attempt all questions.

Subject Name: Advanced Digital Communication

2. Make suitable assumptions wherever necessary.

3. Figures to the right indicate full marks.

ME - SEMESTER-III (NEW)• EXAMINATION – SUMMER 2017

Date: 02/05/2017

Total Marks: 70

Define Hilbert transform. Prove the following properties of Hilbert transforms: **Q.1** 07 (i) If x(t) = x(-t) then $\hat{x}(t) = -\hat{x}(-t)$, (ii) If $x(t) = \cos \omega_0 t$ then $\hat{x}(t) = \sin \omega_0 t$ and (iii) If $x(t) = \sin \omega_0 t$ then $\hat{x}(t) = -\cos \omega_0 t$. Write a short note on: (i) Continuous Phase FSK (CPFSK) and (ii) Continuous **(b) 07** Phase Modulation (CPM). Consider the four waveforms shown in following figure: **Q.2** 07 $s_2(t)$ (i)Determine the dimensionality of the waveforms and a set of basis functions. (ii)Use the basis functions to represent the four waveforms by vectors s₁, s₂, s₃, and s4. (iii) Determine the minimum distance between any pair of vectors. Explain the block diagram of Matched filter demodulator and also explain the **07 (b)** properties of Matched filter. OR **(b)** Explain the block diagram of Correlation type demodulator with necessary 07 equation. Derive the expression of probability of error or BER for M-ary PAM signal. **Q.3 07** (a) **(b)** Explain the block diagram of Optimum AWGN receiver in detail. 07 **Q.3** Explain Maximum-likelihood sequential detection (MLSD) in detail. 07 (a) Explain the block diagram of carrier recovery circuit using a square law device. 07 **(b)** Based on Maximum-likelihood (ML) criterion, determine a carrier phase 0.4 **07** (a) estimation method for binary on-off keying modulation. Explain the block diagram of Costas loop with necessary equation. 07 **(b) Q.4** (a) Explain Nyquist criteria for zero Intersymbol Interference (ISI) with its proof. 07 Write a short note on: (i) Binary signaling with duobinary pulse and (ii) Four 07 **(b)** level signal transmission with duobinary pulse. 1

Q.5	(a)	A voice-band telephone channel passes the frequencies in the band from 300 to	07
V.	(4)	3300 Hz. It is desired to design a modem that transmits at a symbol rate of 2400	07
		symbols/s, with the objective of achieving 9600 bits/s. Select an appropriate	
		QAM signal constellation, carrier frequency, and the roll-off factor of a pulse	
		with a raised cosine spectrum that utilizes the entire frequency band. Sketch the	
		spectrum of the transmitted signal pulse and indicate the important frequencies.	
	(b)	Explain decision feedback equalizer in detail.	07
		OR	

Q.5 (a) Define CDMA with its capacity formula. Also justify the statement that the sum of rates of the K users goes infinity with K for FDMA and TDMA while it exceed in CDMA.

(b) Explain the block diagram of Orthogonal frequency division multiplexing 07 (OFDM) technique in detail.

07