Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

ME- SEMESTER-IV (NEW) EXAMINATION – SUMMER 2017

	•	ct Code:2741001 Date:03/05/201'	7
T	ime: struct	ct Name: Applied Super Conductivity 02:30 pm to 05:00 pm Total Marks: 7 tions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks.	70
Q.1	(a)	Explain with necessary graphs the thermodynamics of the superconducting first	07
	(b)	order and second order phase transition. Describe the BCS theory and explain the Cooper pair with necessary figure.	07
Q.2	(a)	Explain briefly about magnetic behaviour of a perfect conductor and a superconductor with figure.	07
	(b)	Explain magnetic phase diagram in context to H_c and T_c with necessary plots. Also discuss about the magnetic phase diagram of Type-II superconductor.	07
	(b)	Formulate the London equation in terms of the current density j . What do you conclude from this equation?	07
Q.3	(a)	Define DC Josephson effect. Also describe contribution to the superconducting order parameter within the oxide barrier associated with the tunneling of Cooper	07
	(b)	pairs through the barrier with a plot. Differentiate between low temperature superconductors and high temperature superconductors.	07
Q.3	(a)	OR Write functions of the main components of a commercial DC Superconducting QUantum Interference Device (SQUID) magnetometer.	07
	(b)	Describe the fabrication procedure of $Y_1Ba_2Cu_3O_{6+\delta}$ HTC superconductor.	07
Q.4	(a)	Draw the detailed schematic structure of the following cuprates. (a) Ca _{0.85} Sr _{0.15} CuO ₂ (b) LaSrCaCu ₂ O ₆ .	07
	(b)	Write the important features of Superconducting Motors against the conventional motors.	07
Q.4	(a)	OR Describe with figure the working of Laser Ablation System for preparation of	07
V. 4	(b)	superconducting films. Describe briefly the basic features of fullerenes and fullerene Superconductivity.	07
Q.5	(a)	Describe the significance of superconductivity as an application for energy	07
	(b)	storage. Explain briefly following. i). Matched filters ii). Electromagnetic shielding	07
Q.5	(a)	OR Explain principle of magnetic levitation. Describe how the superconductivity helps to it.	07
	(b)	Describe the application of superconductivity for Nuclear magnetic resonance.	07
