Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY ME – SEMESTER– IV- EXAMINATION – SUMMER-2017

	0	t Code: 2744202 Date: 03/05/20 t Name: Power Efficient VLSI Design	Date: 03/05/2017	
Ti	me:0	2:30 PM TO 05:00PM Total Marks: ons: Attempt all questions.	70	
	3.	Figures to the right indicate full marks.		
Q.1	(a) (b)	Discuss in detail with suitable diagram sources of power dissipation in CMOS. Explain the need of Power Efficient VLSI Design and explain in brief Power- Speed Trade-Off with suitable equations and examples.	07 07	
Q.2	(a) (b)	What is Glitch? Discuss various techniques used for glitch reduction. Why n-well CMOS Process? Why not p-well CMOS Process? OR	07 07	
	(b)	Compare Power and Energy. What is more important Low Power Device or Low Energy Device?	07	
Q.3	(a) (b)	Explain Self-Reverse Biasing. Derive mathematical formula to avoid negative tolerable skew and positive tolerable skew.	07 07	
		OR		
Q.3	(a) (b)	Explain low dynamic power techniques. Explain Multi -V _T Technique.	07 07	
Q.4	(a) (b)	Discuss Tolerable Skew v/s Zero Skew. Discuss data retention power sources for DRAM and SRAM. OR	07 07	
Q.4	(a)	Discuss the effect of process variation on the performance of clock distribution	07	
	(b)	network. Compare SPICE simulation based power simulation v/s statistical based power estimation techniques.	07	
Q.5	(a)	Discuss Monte Carlo Simulation Technique for power estimation with necessary expressions.	07	
	(b)	Discuss architectural level estimation technique. OR	07	
Q.5	(a)	Discuss in brief the effect of transistor and gate sizing for Power Efficient VLSI Design.	07	
	(b)	Explain Power and Performance Management.	07	

1