GUJARAT TECHNOLOGICAL UNIVERSITY ME SEMESTER – I (OLD) EXAMINATION – SUMMER 2017

Subject Code: 710401N Subject Name: Statistical Signal Analysis Time:02:30 P.M. to 05:00 P.M.

Date:08/05/2017

Total Marks: 70

- Instructions:
 - 1. Attempt all questions.
 - 2. Make suitable assumptions wherever necessary.
 - 3. Figures to the right indicate full marks.
- Q.1 (a) Define Cumulative Distribution Function. State and prove all the properties of 07 CDF.
 - (b) What do you mean by conditional probability? What is conditional expectation? 07 Determine E[E[Y|X]].
- Q.2 (a) Define characteristic function. Find the characteristic function of the uniform random variable in the interval [a,b]. Also find the characteristic function of exponential random variable with PDF $f_X(x) = \lambda e^{-\lambda x}$, $x \ge 0$ and $\lambda > 0$.
 - (b) State and prove bayes' rule. Two numbers x and y are selected at random between 07 0 and 1. Let the events A and B be defined as $A = \{x > 0.5\}$ and $B = \{y > 0.5\}$. Are the events A and B independent?

OR

- (b) Define the Probability Density Function. Determine the mean, the mean square value and the variance of the RV X whose PDF is given by $p_x(x) = 0.5|x|e^{-|x|}$.
- Q.3 (a) Show that the poisson distribution can be used as a convenient approximation to 07 the binomial distribution for large n and small p.
 - (b) Let the random variable Y be defined by Y=aX+b, where *a* is a nonzero constant. 07 Suppose that X has cdf $F_X(x)$, then find $F_Y(y)$ and $f_Y(y)$

OR

- Q.3 (a) State and prove Chebyshev inequality. Show that chebyshev's inequality is 07 useful to decide the width of the PDF.
 - (b) Let X be a continuous random variable with PDF

$$f_{X}(x) = \begin{cases} kx & 0 < x < 1\\ 0 & otherwise \end{cases}$$

- (a) Determine the value of k and sketch $f_X(x)$
- (b) Find and sketch corresponding CDF $F_X(x)$
- (c) Find $P(1/_4 < X \le 2)$.
- Q.4 (a) The joint CDF is given by:

$$F_{X,Y}(x,y) = \begin{cases} (1-e^{-\alpha x})(1-e^{-\beta y}) & x \ge 0, y \ge 0\\ 0 & elsewhere \end{cases}$$

Find the marginal CDF's. Find the probability of the events A = $\{X \le 1, Y \le 1\}$ and B= $\{X > x, Y > y\}$.

- (b) State and prove central limit theorem.
- Q.4 (a) What is the law of large numbers? Explain strong and weak law of large numbers 07 with example.
 - (b) What is convergence of random variable? Explain sure convergence, almost sure 07 covergence and mean square convergence with an example.

07

07

07

- **Q.5** (a) Classify the random processes and explain each in detail.
 - (b) Sketch the ensemble of the random process $x(t) = A \cos (\omega t + \Theta)$, where A and ω are constants and Θ is an R.V. uniformly distributed in the range $(0,2\pi)$. Just by observing the ensemble, determine if this is a stationary or nonstationary process. Also determine whether this is a wide-sense stationary process.

OR

- Q.5 (a) Explain the concept of mean square derivatives of a random process with 07 necessary equations.
 - (b) Determine the PSD and the mean square value of a random process x(t) 07 = A cos ($\omega t + \Theta$), where A and ω are constants and Θ is an R.V. uniformly distributed in the interval (0,2 π).

07