GUJARAT TECHNOLOGICAL UNIVERSITY ME SEMESTER – I (OLD) EXAMINATION – SUMMER 2017

Subject Code: 710703NDate:10/05/2Subject Name: MODERN CONTROL SYSTEMSTime:02:30 P.M. to 05:00 P.M.Total MarkInstructions:Total Mark			
Q.1	(a)	Derive the state space model of speed control of DC motor using armature controlled method.	07
	(b)	Define (1) State Variable (2)State Space (3) State Vector (4) State Equation (5) State Model (6) Controllability (7) Observability	07
Q.2	(a)	Obtain the transfer function of the system defined by $ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u ; y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} $	07
	(b)	What is Jordan Canonical form ? Discuss its properties. OR	07
	(b)	Consider the matrix $A = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}$, compute e^{At} using sylvester's interpolation formula.	07
Q.3	(a)	Define controllability of the system. Is the following system completely state controllable.	07
		$\begin{bmatrix} \dot{x1} \\ \dot{x2} \\ \dot{x3} \end{bmatrix} = \begin{bmatrix} -1 & -2 & -2 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \mathbf{u} ; \mathbf{y} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix}$	
	(b)	What is State Transition matrix? How it is obtained? Discuss its properties OR	07
Q.3	(a)	Explain eigen values and eigenvectors of a matrix. Hence, prove that the Eigen values of a matrix are invariant under linear transformation	07
	(b)	Is the following system completley observable? $ \begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u; y = [20 \ 9 \ 1] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} $	07
Q.4		Explain variable gradient method to construct Liapunov function. Consider the system described by the equations	07 07
	(0)	$\dot{x_1} = -x_1 - x_2^2$ and $\dot{x_2} = -x_2$. Investigate the stability of the equilibrium state. Use direct method of Lyapunov.	07
Q.4	(a)	Using the Lyapunov equation, determine the stability range of the gain K for the	07
		following state space model of the system. $\begin{bmatrix} \dot{x1} \\ \dot{x2} \\ \dot{x3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -2 & 1 \\ -K & 0 & -1 \end{bmatrix} - \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ K \end{bmatrix} r,$	
	(b)	Explain the principle of duality that clarify apparent analogy between controllability and observability.	07

1

 $\begin{bmatrix} \dot{x1} \\ \dot{x2} \\ \dot{x3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, The system uses the state feedback control u = -kx, let us choose the desired closed loop poles at $s = -2 \pm j4$ and s = -10. Determine the state feedback gain matrix k.

(b) What is the pole placement? Derive the equation for Matrix K using 07 Ackermann's formula.

OR

Q.5 (a)Compare classical control theory with the modern control theory.07(b)With neat block diagram representations discuss cascade decomposition method.07