Date: 10-06-2013

Total Marks: 70

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – II • EXAMINATION – SUMMER • 2013

Subject code: 1710405 Subject Name: Fiber Optic Communication Time: 10.30 am – 01.00 pm

Instructions:

(b)

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Compare step index and graded index fibers with respect to: Refractive index 07 profile, Ray transmission in fiber, and Numerical aperture. What are fiber modes? Explain in brief.
 - (b) Solve the following example:
 - i) Find the core radius necessary for single-mode operation at 1320 nm of a step-index fiber with core index 1.480 and cladding index 1.478. What are the numerical aperture and maximum acceptance angle of this fiber?
 - ii) A point source of light is 12 cm below the surface of a large body of water (n=1.33 for water). What is the radius of the largest circle on the water surface through which the light can emerge?
- Q.2 (a) Define signal attenuation. Write a brief note on basic attenuation mechanisms in 07 fiber optics.
 - (b) A 6 km long optical link consists of multimode step-index fiber with a core 07 refractive index of 1.5 and a relative refractive index difference of 1%. Find:
 - i) the delay difference between the slowest and fastest modes at the fiber end;
 - ii) the rms pulse broadening due to intermodal dispersion on the link;
 - iii) the maximum bit rate B_T that may be obtained without substantial errors on the link assuming only intermodal dispersion;
 - iv) the bandwidth-length product of this fiber assuming the maximum bit rate equals the bandwidth.
 - OR
 - (b) Define power signal-to-noise ratio S/N of an optical receiver. An InGaAs pin 07 photodiode has the following parameters at 1500 nm: $I_D = 1.0$ nA, = 0.95, $R_L = 500$, and the surface leakage current is negligible. The incident optical power is 500 nW (-33 dBm), and the receiver bandwidth is 150 MHz. Compare the various noise currents of direct detection type optical receiver.

Q.3	(a)	Explain the following terms with reference to optical communication:			l communication:	07
		i) Mode-Field Diameter	ii)	Group velocity	iii) Material dispersion	

(b) Discuss pulse broadening in graded-index fiber. What is mode-coupling? 07

OR

- Q.3 (a) Explain the structure of Distributed feedback (DFB) laser diode with neat 07 sketch.
 - Answer the following questions:i) Describe the following terms related to photo detector with their significance: Responsivity, Response Time, and Cut off wavelength.
 - ii) Draw and explain the three key transition processes involved in laser action.

07

1

07

- **Q.4** Describe the configuration of a surface emitting LED. Also find the expression 07 **(a)** of internal quantum efficiency and optical power generated by LED. 07
 - **(b)** Write short note on WDM.

OR

- **Q.4** Write short note on Raman amplifier. **(a)**
 - Discuss 2×2 fiber coupler. Also define various performance parameters of an 07 **(b)** optical coupler.
- Q.5 Explain operating principle of an optical time-domain reflectometer (OTDR). 07 **(a)** List out OTDR field applications.
 - **(b)** Answer the following questions:
 - Describe the effects of self-phase modulation in optical fiber i) communications.
 - ii) Consider a $Ga_{1-x}Al_xAs$ laser with x=0.07. Find the peak emission wavelength.

OR

- List out the nonlinear effects in optical fiber transmission link that degrade 07 Q.5 **(a)** network performance. Describe Stimulated Brillouin Scattering (SBS) in brief.
 - Answer the following questions: **(b)**
 - Explain power penalties in optical link in brief. i)
 - A GaAs laser diode has a 500-µm cavity length which has an effective ii) absorption coefficient of 10 cm⁻¹. For uncoated facets the reflectivities are 0.32 at each end. What is the optical gain at the lasing threshold?

07

07

07