GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – II • EXAMINATION – SUMMER • 2013

S	ubje	ct code: 1720110 Date: 07-06-2013 ct Name: Numerical Methods				
T	ime:	10.30 am – 01.00 pm Total Marks: 70				
I	nstru	uctions:				
		 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 				
Q.1	(a)	Solve using Newton Raphson method $x^3 + 2x^2 + 10x - 20 = 0$	7			
Q.1						
	(b)	Explain different types of Errors with suitable examples	7			
Q.2	(a)		7			
	(h)	3x + 2y + 3z = 18, $x + 4y + 9z = 16$. Solve the following equations by Gauss- seidel iteration correct method upto 3	7			
	(b)	significant digits.	/			
		$20x_1 + 2x_2 + x_3 = 30$				
		$x_1 - 40x_2 + 3x_3 = -75$				
		$2x_1 - x_2 + 10 \ x_3 = 30$				
		OR				
	(b)	Write program for matrix Inversion.	7			
Q.3	(a)	Given that $\frac{dy}{dy} = x + y^2$, $y(0) = 1$. Using Runge-Kutta fourth order method find	7			

- Q.3 (a) Given that $\frac{dy}{dx} = x + y^2$, y(0) = 1. Using Runge-Kutta fourth order method find 7 approximate value of y(0.2), take step-size 0.1
 - (b) A train is moving at speed of 30m/sec. suddenly brakes are applied. The speed of the 7 train per second after t seconds is given by the below table. Apply Simpsonøs three-eighth rule to determine the distance moved by the train in 30 seconds

Time(t)	0	5	10	15	20	25	30
Speed(y)	30	24	19	16	13	11	10
OR							

- **Q.3 (a)** Use Runge Kutta second order method to approximate y when x= 0.8 with 7 $\frac{dy}{dx} = \sqrt{x + y}$, $x_0 = 0.4$ and $y_0 = 0.41$
 - (b) Evaluate the integral using simpson s one-third rule. $\int_0^1 (4x 3x^2) dx$, taking n=10. 7
- Q.4 (a) Use Eulersøs method to find an approximate value of y at x=0.1 in five steps, given that 7 $\frac{dy}{dx} = x - y^2$ and y(0) = 1. Take $x_0 = 0$.
 - (b) Using Lagrange α formula, find the values of f(0) on the table given below. 7

[x:	-1	-2	2	4
	f(x):	-1	-9	11	69

OR

- Q.4 (a) Use modified Eulerøs method to find the solution in the interval [1,1.5] using step size 7 h=0.1 for $\frac{dy}{dx} = xy$ with y(1) = 5.
 - (b) Fit cubic spline and evaluate y(1.5)

x:	X0= 1	X1=2	X2=3	X3=4
y:	Y0= 1	Y1=2	Y2= 5	Y3=11

- Q.5 (a) Evaluate $\int_{1}^{5} \log_{10} x \, dx$, taking 8 subintervals, correct to four decimal places by 7 Trapezoidal method.
 - (b) If P is the pull required to lift a load W by means of pulley block, find a linear law of 7 form P=mW+c connecting P and W using below given data where P and W are taken in kg-wt. Compute P when W= 200 kg.

P:	12	15	21	25
W:	50	70	100	120

OR

- Q.5 (a) Explain and derive Trapezoidal rule for numerical integration.
 - (b) Given a table of values for the function. Fit the second degree polynomial

7 7

x:	1.0	1.5	2.0	2.5	3.1	4.0
y:	1.1	1.3	1.6	2.0	3.4	4.2

7