GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER - II • EXAMINATION - SUMMER • 2013

Subject code: 1721205 Date: 05-06-2013 Subject Name: Hydro System Engineering and Management Time: 10.30 am – 01.00 pm **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 Maximize
$$Z = 27 x_1 + 29 x_2 + 25 x_3$$
 14
Subject to the constraints :

Subject to the constraints :

 $27 x_1 + 12 x_2 + 12 x_3 \ddot{O} 162$ $27 x_1 + 15 x_2 + 25 x_3 \ddot{O} 189$ 3 x2 Ö5 $x_{1,} x_{2,} x_{3} \geq 0$

- 07 Q.2 (a) Explain Kuhn-Tucker conditions for optimizing nonlinear problem.
 - (b) Explain dynamic programming & its characteristics with merits and 07 demerits.

OR

- (b) Define: Slack variable, Surplus variable, Objective function, 07 Degenerate solution
- Q.3 A diet for a sick person must contain at least 4000 units of vitamins, 50 14 units of minerals and 1400 calories. Two foods A and B are available at a cost of Rs.4/- and Rs.3/- per unit respectively, If one unit of A contains 200 units of vitamins, 1 unit of mineral and 40 calories and one unit of food B contains 100 units of vitamins, 2 units of minerals and 40 calories, find by graphical method, what combinations of foods be used to have least cost?

OR

Q.3 Write the dual of given problem. **(a)**

> Minimize $Z = 2 x_2 + 5 x_3$ $x_1 + x_2 \times 2$ Subject to $2 x_1 + x_2 + 6 x_3 \ddot{O} 6$ $x_1 - x_2 + 3 x_3 = 4$ $x_{1}, x_{2}, x_{3} \geq 0$

07 (b) Discuss application of system engineering in field of water resources.

07

Ware house Factory	W1	W2	W3	W4	Factory capacity
F1	19	30	50	10	7
F2	70	30	40	60	9
F3	40	8	70	20	18
Warehouse	5	8	7	14	34
Requirements					

Q.4 (a) Find the initial basic feasible solution of the given transportation 07 problem.

	(b)	Discuss the objective function of water resources project.				
		OR				
Q.4	(a)	Explain Big M method in detail.				
	(b)	Discuss limitations of linear programming.	07			
Q.5	(a)	Write short note on -Simulation Modelingø				
	(b) Explain Gomory & cutting plane method.					
		OR				
Q.5	(a)	Write short note on modified method for optimum solution of transportation problem.	07			
	(b)	Explain Bellmanøs principle of optimality.				
