Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – II • EXAMINATION – SUMMER • 2013

Subject code: 1721507 Subject Name: Advanced Steel Structure Design Time: 10.30 am – 01.00 pm Date: 05-06-2013

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- 4. Use of IS:800, IS:801, IS:811, IS:875, IS:1893 and Steel Table is permitted.
- Q.1 (a) A deck type N-truss bridge has simply supported span of 32m with eight panels 14 each of 4m. Top chord is U₁ to U₉, while bottom chord is L₁to L₉ (Vertical U₁L₁ & U₉L₉ and horizontal L₁L₂ & L₈L₉are not provided). The height of truss is 4m. Design any three of the following members: U₁L₂, L₄L₅, U₅U₆ & U₂L₂.
- Q.2 (a) Explain the effect of fatigue and the design requirements to resist fatigue in 07 steel building.
 - (b) List various load combinations for design of steel structures. Explain load 07 combination for Non-orthogonal buildings.

OR

- (b) Explain parameters for Design of Seismic Resistant Steel Building. 07
- Q.3 Calculate design wind forces using the gust factor approach on a steel multistorey building 72m tall and plan size 15mx25m to be constructed in Chennai. Assume average storey height to be 3.0m. The frames are to be spaced at 5m c/c in both directions

OR

Q.3	()	Explain the design steps of tension member made from cold form steel. Explain the Dynamic Effects of wind on steel buildings.	07 07
Q.4	()	Explain the structural applications of cold form steel.	07

(b) Explain the tension field method of determining post buckling strength in 07 design of plate girder.

OR

Q.4 A simply supported plate girder with effective span of 25m is subjected to uniformly distributed load of 60kN/m and two concentrated loads of 500 kN at 9m from each support. Considering fully restrained condition at both the ends against lateral buckling through out the span.
(a) Design a section with flange plates and 8mm thick web plate.
(b) Check last panel for shear and moment capacity & design end bearing

stiffeners.

06

08

Q.5 A non-sway column in a building frame with flexible joints is 4.5m high and 14 subjected to the following load and moments:

Factored axial load = 400 kN

Factored moment at top of column = 30.0 kNm and

Factored moment at bottom of column = 42.0 kNm

Design a suitable beam-column assuming $f_y = 250 \text{ N/mm}^2$. Take the effective length of the column as 0.8L along both the axes.

OR

Q.5 Design a top chord of welded cold form light-gauge steel roof truss having 14 following data:

- (i) Length of member 2.50m
- (ii) Maximum compressive force of 18kN.

Design should confirm to IS:801-1975 codal provisions.
