Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – II • EXAMINATION – SUMMER • 2013

Subject code: 1721806 Subject Name: Environmental Modeling Time: 10.30 am – 01.00 pm Instructions: Date: 05-06-2013

Total Marks: 70

10

04

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q-1(a) A waste water treatment plant discharge treated sewage into a stream. The characteristics 10 of effluent are
 - (i) Flow rate: $15000 \text{ m}^3/\text{day}$
 - (ii) BOD₅: 10 mg/l
 - (iii) Temperature: 25°C
 - (iv) The bottle decay coefficient of the CBOD : 0.2/day

The stream characteristics upstream of the point of discharge are as follows

- (i) Flow rate : $0.2 \text{ m}^3/\text{sec}$
- (ii) Velocity u : 0.2 m/sec(stream flow plus treated sewage)
- (iii) Re aeration constant kr: 2.6/day
- (iv) BOD₅: 3mg/l
- (v) DO: 8.0 mg/l
- (vi) Temperature: 22°C
- (vii) In stream decay coefficient for CBOD: 0.3/day
- Find DO concentration at 5 km distance from the point of discharge.
- Q-1(b) Using the stream characteristics of the stream [as given above in (a)] calculate the effluent 04 limitations for a discharge of 20,000 m³/day. Assume that the water quality standard for DO is 5mg/l.
- Q-2(a)Define and explain the concept of "control volume" in the mass balance equation.07Q-2(b)Define and explain with the help of example:
(i) Conservation of matter07
 - (ii) Conservation of energy
 - (iii) Conservation of matter and energy

OR

Q-2(b) (i) Write and explain the mass balance equation with reference to time factor. 07 (ii) Define the complete mix and plug flow system.

Q-3(a) Given below are the details of a lake showing signs of eutrophication.

- (i) Annual rain fall is 0.25 m with a phosphorus concentration of 0.02 mg/l
- (ii) Evaporation from lake 0.7m
- (iii) Runoff to the lake is 0.25 m per year
- (iv) A total of 3.8 m³/s of water is withdrawn from lake for water supply (70% of it is returned to the lake with an added amount of P is 2.0 mg/l.)
- (v) Phosphorous loss to sediments is first order process with a constant 0.003/day

If the surface area of lake is 100 km^2 and average depth is 15m, estimate the phosphorous loading due to run off.

- **Q-3(b)** With the help of neat diagram explain the following
 - (i) Batch reactor operation (ii) Plug flow reactor

OR

Q-3(a)	Define the following terms(i) Rate(iv) Conservative pollutant	06
Q-3(b)	 (ii) Reactive chemicals (iii) Advection (vi) Diffusion Write explanatory note on the following (i) Waste load allocation – An approach to maintain the water quality (ii) River segmentation and its importance in river modeling 	08
Q-4(a)	Write the mass balance equation for an ideal 1-D plug flow stream under steady state conditions with a first order decaying substance (e.g BOD). Solve for the concentration as a function of concentration at x=0, the rate constant k_d , longitudinal distance x, and mean velocity u. Assume the rate constant for BOD decay is 0.2 d ⁻¹ , the mean velocity of the stream is 0.5 m sec and the initial concentration is 100mg/l at x=0.Plot the resulting	10
(b)	concentration with downstream distance x in KM. Define the following terms (i) State variable (iii) Calibration (ii) Verification (iv) Simulation OR	04
Q-4(a) Q-4(b)	With the help of a neat diagram, explain the key elements in a mass balance. Enlist and explain the possible actions that may occur when a substance enters a control volume.	06 06
Q-4(c)	Define" environmental modeling"	02
Q-5(a) Q-5(b)	 Enlist and explain the importance of conventional pollutants. Define and describe (i) Grey model (ii) Conceptual model (iii) Empirical model 	08 06
~ -	OR	
Q-5	Write an explanatory note on(i) The need and importance of environmental modeling(ii) The limitations of environmental modeling	14
