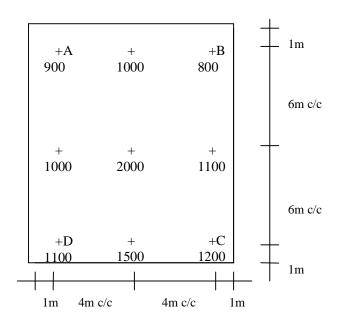
GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – II • EXAMINATION – SUMMER • 2013


Subject code: 1722005 Subject Name: Advanced Foundation Engineering Time: 10.30 am – 01.00 pm

Date: 03-06-2013

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Write down the advantages of an under-reamed pile over pile foundation in 09 cohesive soil? Find the ultimate load carrying capacity of triple under reamed pile of shaft diameter (d) 0.50 m embedded in the cohesive ground (Cu=50 kPa). The shaft distance upto first bulb is 3.0 m. Take under reamed diameter equal to three times shaft diameter and c/c spacing between two bulbs equal to two times under reamed diameter. The water table is touching the ground level. = 0.70
 - (b) Briefly explain important location & depth criteria for the shallow 05 foundations.
- Q.2 (a) In case of poor SBC, how a Raft footing will help? For a raft shown below, 07 compute the contact pressure under the corner columns A, B, C & D. (Note: Loads are in kN and Fig. is not to the scale).

- (b) Data given:-
 - B x L = 2.0 m x 2.0 m
 - Df = 2.0 m
 - The load is 0.15 m eccentric along the x-x axis.
 - Soil properties : t = 17 kN/m³; sat = 19 kN/m³; C = 0.0 kPa, = 38.
 Compute the safe bearing capacity value for the Ground Water Table (GWT) position of 3.0 m below the GL. Use IS code method.

OR

(b) A 2.00 m x 3.00 m size footing is placed at 2.00 m depth below the ground level (GL) within a 8.0 m thick clay stratum. Ground water table (GWT) lies at 2.00 m depth below the GL. The clayey soil has t = 17.5 kN/m³, sat = 20.10 kN/m³, LL = 80%, G = 2.7 & water content below 2.0m depth = 25.46%. If the net pressure intensity at the footing base = 180 kPa, divide the clay stratum in TWO PARTS and compute the settlement due to consolidation

Q.3 (a) Differentiate between the different types of combined footings.

05 09

07

- (b) Data given:
 - 1. LHS column: 0.40m x 0.40m touching the property line on the left side. W1 = 1500 kN
 - 2. RHS column: W2 = 1200 kN
 - 3. c/c distance between column axes = 8.0 m
 - 4. SBC = 230 kPa

Find size of the STRAP footing and draw shear force & bending moment diagrams mentioning typical values.

OR

- Q.3 (a) What is importance of proportioning of shallow footings? Briefly explain the 05 procedure for the same.
 - (b) For the data given in Q5 (b) above, consider SBC = 120 kPa and find size of 09 the TRAPEZOIDAL combined footing and draw only S.F. diagram mentioning typical values.
- Q.4 (a) The following data was obtained in a vertical pile load test on a 400 mm 07 diameter pile:-

Load(kN)	5.0	10.0	20.0	30.0	40.0	50.0	60.0	
Settlement(mm)	2.5	4.0	9.5	16.5	27.0	40.5	61.0	
Dist the land actual many and determine the allowed is in the second second in the second s								

Plot the load settlement curve and determine the allowable load as per IS code.

(b) A 3 x 3 = 9 pile group is embedded in uniform cohesive bed (Cu = 30 kPa, u = 0.0° , sat = 20 kN/m³, G = 2.70, d = 18.0 kN/m³, LL= 50 %). The piles diameter and length are 0.50 m and 12.0 m respectively. Calculate the settlement of the pile group under the applied load of 3000 kN.

- Q.4 (a) Briefly describe various methods of finding the lateral load carrying capacity 07 of a pile.
 - (b) A 20 m long steel pile is embedded in a deposit of uniform sand. The pile 07 head is subjected to a horizontal force of 10 kN. Assuming the coefficient of subgrade modulus of 11,000 kN/m³, calculate the deflection of free pile head. What will be the change in deflection if pile head is fixed? Assume EI of pile as 3.8×10^4 kN/m². The values of non dimensional coefficient at ground level are Ay = 2.435, By = 1.623 & As = -1.623, Bs = -1.750
- Q.5 (a) Describe various methods of finding dynamic soil properties.

07

07

(b) A cyclic plate load test on 60cm x 60 cm plate was carried out at a depth of 07 3.0m in a deposit of silty sand. The data obtained is given below:-

5.0m m u ueposa e	Sund. The duty obtained is given below.										
Load(kPa)	20	0	50	0	80	0		120	0	140	0
Settlement(mm)	0.5	0.4	2.0	1.5	3.5	2.5	5	4.0	3.0	5.5	4.0
Load(kPa)	200	0	250	0	30)0	0		400	0]
Settlement(mm)	7.0	5.5	10.0) 8.0	0 12	2.5	1(0.0	20.0	17.0	

Find the coefficient of elastic uniform compression Cu. Also find C $% C_{0}$, C_{0} and C $% C_{0}$.

OR

- Q.5 (a) What are the different types of well foundations? Under what situations these 07 foundations are preferred? Also mention their merits and demerits.
 - (b) A concrete block of weight 800 kN is resting over sandy clay bed having Cu $07 = 35,000 \text{ kN/m}^3$. The block is subjected to horizontal oscillation under a dynamic force of 12 kN. If the base contact area is 10 m², find its natural frequency. If the operating frequency is 5 Hz, calculate the frequency ratio and magnification factor. Take damping factor = 0.2 and the weight the machine is one fifth of the weight of concrete block.
