GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – II • EXAMINATION – SUMMER • 2013

Subject code: 1722309 Subject Name: Numerical Methods Time: 10.30 am – 01.00 pm Instructions: Date: 07-06-2013

Total Marks: 70

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) (i) Find a real root of the equation $x^3 + 4x^2 1 = 0$ in the interval 03 [0,1] by using Bisection method. Perform four iterations.
 - (ii) Find a real root of the equation 3x = cosx + 1 correct to three decimal places by using Newton-Raphson Method. Take $x_0 = 0$.
 - (b) Derive the formula for generating approximations of the root by 07 using False Position Method and hence find a root of the equation $xe^{x} cosx = 0$

using False Position Method correct up to $\varepsilon_a < 10$ % in [0, 1].

Q.2 (a) A total charge Q is uniformly distributed around a ring-shaped 07 conductor with radius a. A charge q is located at a distance x from the center of the ring. The force exerted on the charge by the ring is given by

$$F = \frac{1}{4\pi e_0} \frac{qQx}{(x^2 + a^2)^{\frac{3}{2}}}$$

where $e_0 = 8.85 \times 10^{-12} C^2 / (Nm^2)$. Find the distance x where the force is 1.25 N if q and Q are 2×10^{-5} for a ring with radius 0.9 m using Newton-Raphson Method.

(b) What is mathematical modeling? Develop a model to find the velocity 07
 v of a freely falling parachutist as a function of time t assuming that the air resistance is linearly proportional to v. How can you solve the problem numerically?

OR

(b) Describe the Gauss Elimination Algorithm. 07

Q.3 (a) (i) Solve the following system of equations by Gauss Elimination 03 Method:

x + y + z = 9, 2x - 3y + 4z = 13, 3x + 4y + 5z = 40(ii) Solve the following system of equations using Gauss Seidel 04

Method using initial guess
$$x_0 = y_0 = z_0 = 0$$
:
 $20x + y - 2z = 17$, $3x + 20y - z = -18$, $2x - 3y + 20z = 25$

(b) Use matrix Inversion Method to find the solution of the system:

$$x + y + 2z = 4, x + 2y + 3z = 8, 2x + 3y + z = 12.$$
07

OR

Q.3 (a) Describe in detail the pitfalls of Gauss Elimination Method. Also 07 explain how you will detect a singular system.

(b) The following system of equations was generated by applying the 07mesh current law to a circuit:

 $60I_1 - 40I_2 = 200,$ $40\bar{I}_1 + 15\bar{0}I_2 - 10\bar{0}I_3 = 0,$ $-100I_2 + 130I_3 = 230$ Solve for I_1 , I_2 and I_3 .

Q.5

Q.5

(a) (i) The following data was taken from an experiment that measured 05 Q.4 the current in a wire for various imposed voltages:

V,V	2	3 4		5	7	10	
i,A	5.2	7.8	10.7	13	19.3	27.5	

On the basis of a linear regression of this data, determine current for a voltage of 3.5 V.

- 02 (ii) What is the difference between the two methods of curve fitting, namely, regression and interpolation?
- (b) Give the names of three of the nonlinear curves which can be 07 transformed to a linear equation. Describe the procedure to fit such nonlinear curves to the given data.

OR

- (a) Find the equation of a straight line, $y = a_0 + a_1 x$ which best fits with **Q.4** 07 the given points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ using least squares method.
 - (b) (i) Apply Newtonøs backward difference formula to the data below to 03 obtain a polynomial of degree 4 in x:

x	1	2	3	4	5
y	1	-1	1	-1	1

	(ii) Use Newtonøs divided difference formula to evaluate $f(8)$ given								04	
		x	4	5	7	10	1	1 1	3	
		f(x)	48	100	294	900) 12	10 20	28	
(a)) (i) The following table gives the velocity v of a particle at time t :							03		
		t (sec)	0	2	4	6	8	10	12	
		v (m/sec)	4	6	16	34	60	94	136	
	Find the distance moved by the particle in 12 seconds.									
	(ii) Write the algorithm of the Lagrange interpolation method.								04	
(b)	Apply Runge-Kutta method of order 4 to find approximate value of y									
	for $x = 0.2$, in steps of 0.1, if $\frac{dy}{dx} = x + y^2$, given that $y = 1$ when								l	
	<u>x</u> –	0.								
					OR					
(a)	A st	teady state h	eat bala	nce for	a 10-m	rod car	n be rep	oresente	d as	07
	d^2T	രദ്ണം –								
		-0.15T =	÷ U							

- $dx^2 = 0.151$ with T(0) = 240 and T(10) = 150. Use the finite-difference approach with $\Delta x = 2 m$ to solve the given boundary value problem.
- (b) (i) Why do we need the methods for numerical integration? 03 (ii) Describe the algorithm of Euler Method. 04
