GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER - II • EXAMINATION - SUMMER • 2013

Subject code: 1722905 Date: 03-06-2013 **Subject Name: Optimization Techniques** Time: 10.30 am – 01.00 pm

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a)	Discuss utility of optimization techniques with a case study in engineering field.	06
	(b)	 Plot f(x). Also, minimize a quadratic function f(x) = x² - x using (i) Newton's method and (ii) Quasi - Newton method. Comment on the result obtained. 	08
Q.2	(a)	State necessary and sufficient conditions for stationary points. Sketch $y = x^2 - 4x$ and find stationary points.	07
	(b)	Define convex function. Also, determine whether the function is convex or concave? (i) $f(x) = 2x_1^2 + 2x_1x_2 + 1.5x_2^2 + 7x_1 + 8x_2 + 24$ (ii) $f(x) = 2x^2 - x^3$ in the range $-\infty \le x \ge \infty$.	07
	(L)	OR Shows that $(0,0)$ is the solution state the function $f(x) = 10$, $(5, 2)$	07
	(b)	Show that (0,0) is the saddle point to the function $f(x_1, x_2) = 18 x_1 x_2 + 5 x_2^2$	07
Q.3	(a) (b)	Write down the Kuhn_Tucker necessary conditions. State its applications. Minimize $z = x_1^2 + x_2^2 + x_3^2$ subject to $4x_1 + x_2^2 + 2x_3 - 14 = 0$ using Lagrangian method.	07 07
•		OR	~-
Q.3	(a) (b)	Why penalty method is used? Discuss in detail the penalty method. Minimize using dual simplex method $z = 3 x_1 + 2 x_2$ subject to $3 x_1 + x_2 \ge 3$ $4 x_1 + 3 x_2 \ge 6$ $x_1 + x_2 \le 3$ $x_1, x_2 \ge 3$.	07 07
Q.4	(a) (b)	How box method is useful to find optimal solution? "Geometric programming method is used to solve NLP problems" Justify the statement.	07 07
		OR	
Q.4	(a) (b)	Discuss pattern search algorithm. Enlist various region elimination methods. Discuss any one in detail.	07 07
Q.5	(a)	Describe Successive Linear Programming. How it differs from Successive Quadratic Programming?	07
	(b)	Using line search and QP sub - problem QP (x, B), develop a typical algorithm based on Successive Quadratic Programming. OR	07
Q.5	(a)	Discuss GRG algorithm.	07
	(b)	Explain stochastic programming with a suitable example.	07