GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – II • EXAMINATION – SUMMER • 2013

Subject code: 1723903 Subject Name: Thermal Equipment Design Time: 10.30 am – 01.00 pm

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- 4. Use of Steam table, Property table and Refrigeration table are permitted.
- Q.1 (a) Discuss the effect of fouling on the performance of heat exchangers.
 - (b) A surface condenser used in power plant have 10m long, 3cm in diameter 12 07 nos. of tubes. The flow rate of cooling water is 1.1 kg/s. The inlet and outlet temperature of cooling water are 25° C and 60° C respectively. Determine (i) mass flow rate (ii) overall Heat Transfer Co-efficient (iii) NTU (iv) Effectiveness. Take $h_{fg} = 2257$ KJ/Kg

Q.2 (a) State the basic design procedure for heat exchanger.

(b) A double pipe heat exchanger consists of tube of 40.09mm inner diameter and 48.3 mm outer diameter surrounded by a shell of 96.66mm bore. Dowtherm flowing in a tube at a rate of 2 kg/s is heated from 25°C to 55°C by hot water in counter flow in the annulus cooling from 90°C to 80°C. Calculate the length of the heat exchanger to achieve these temperatures. Use Nu=0.023Re^{0.8}Pr^{0.4}

OR

(b) A double pipe heat exchanger is employed to heat raw water ($m_c=5 \text{ kg/s}$) from 10 15° to 65° C using waste hot water ($m_h=4.83$ Kg/s) cooled in the process from 95° C to 75° C.The hot water flows in the inner tube (ID = 40mm, OD = 48mm)with 25 nos. of longitudinal carbon steel fins (Fin Width = 0.89mm, Fin Height = 12mm & Root Width = 4mm) in counter flow to the raw water which flows in annulus (ID = 75mm,OD = 89mm). Calculate the length of the tubes. Consider K_{fin} material = 60 W/m $^{\circ}$ K. Use Nu=0.023Re $^{0.8}$ Pr $^{0.4}$

Q.3 (a) Write a short note on shell and coil type evaporator.

(b) The following are the values measured on a shell-and-tube ammonia condenser: 07 Velocity of water flowing through the tubes, V m/s 1.25 0.63 Overall heat transfer co-efficient, $U_0 W/m^2 K$ 2250 1540 Water flowed inside the tubes while refrigerant condensed outside the tubes (OD-45mm, ID-40mm, K = 60 W/mK.). Using the concept of Wilson¢s plot, determine the condensing heat transfer coefficient. What is the value of overall heat transfer coefficient when the velocity of water is 0.22 m/s?

OR

Q.3 (a) Give a note on tube in tube type condenser.

04

07

07

04

Total Marks: 70

Date: 03-06-2013

1

- (b) Distilled water with flow rate of 50 kg/s enters a baffled shell & tube heat 10 exchanger at 32° C and leaves at 25° C. Heat will be transferred to 150 kg/s of raw water coming from a supply at 20° C and leaving at 22.33° C. Using Bell Delaware method, calculate the shell diameter of heat exchanger for the following data: tube O.D.: 19mm, tube ID.: 16mm, Square tube pitch: 25.4mm, baffle spacing: 0.5m (25% cut), max. Length = 8m, K_{tube} = 42.3 W/m .K, Total fouling resistance = 0.000176 m².K/W. Surface over design should not exceed 30%.The max. flow velocity through the tube is 2 m/s. Assume combined effect of correction factors = 60%.Nusselt no. for hot fluid is 132 and for cold fluid is 224.j_i = 0.0081. No. of tubes = 350. CL = 1, CTP = 0.93 PR = 1.33.
- Q.4 (a) Explain the step by step calculation procedure for a rating problem in a 07 compact heat exchanger.
 - (b) Air at 2 atm and 500 K with a velocity of 20 m/s flows across a compact heat exchanger matrix having the configuration shown in Figure-1(surface 11.32-0737-S-R).Calculate the heat transfer coefficient and the frictional pressure drop. The length of the matrix is 0.8 m.

OR

- Q.4 (a) Explain factors influencing tube-fin heat exchanger performance in compact 07 heat exchanger.
 - (b) Find out different geometrical characteristics of tubular heat exchanger as 07 shown in figure, where $L_1=200$ mm, $L_2=300$ mm, $L_3=300$ mm, $d_i=10.67$ mm, $d_o=21.87$ mm, h=2.9134 mm

Q.5 (a) Explain different components of induced draft cooling tower.

- (b) The findings of one typical trial pertaining to the Cooling Towers of a Thermal 07 Power Plant 3 x 200 MW is given below:
 - * Unit Load 1 & 3 of the Station = 398 MW
 - * Mains Frequency = 49.3
 - * Inlet Cooling Water Temperature $^{\circ}C = 44$ (Rated 43 $^{\circ}C$)
 - * Outlet Cooling Water Temperature $^{\circ}C = 37.6$ (Rated 33 $^{\circ}C$)
 - * Air Wet Bulb Temperature near Cell $^{\circ}C = 29.3$ (Rated 27.5 $^{\circ}C$)
 - * Air Dry Bulb Temperature near Cell $^{\circ}C = 40.8 ^{\circ}C$
 - * Number of CT Cells on line with water flow = 45 (Total 48)
 - * Total Measured Cooling Water Flow $m_3/hr = 70426.76$
 - * Measured CT Fan Flow $m_3/hr = 989544$

Analyze the cooling tower and comment on the results obtained in the analysis

Q.5 (a) Explain the factors affecting the cooling tower performance.

07

07

(b) A chiller plant system (capacity 500kW) with COP at 4.5 is designed with a cooling tower, the design entering and leaving condenser water temperature of the cooling tower are 37°C and 32°C respectively, the design wet bulb temperature of the outdoor air is 28°C, what are:

a) the cooling tower coefficient

b) the required condenser water and air mass rate (in kg/s) in the cooling tower c) the required height of the fill

Properties of Air at 2 atm pressure		
Temperature [Celsius]	200	250
Density : $[kg / m^3]$	1.49	1.36
Specific Enthalpy : [kJ / kg]	475.95	527.76
Specific Entropy : [kJ / kg K]	7.22	7.31
Specific isobar heat capacity(c _p) [kJ / kg K]	1.03	1.04
Heat conductance [10 ⁻³ W/m*K)]	37.98	41.05
Dynamic viscosity : [10 ⁻⁶ (Pa s)]	26.10	27.98
Kinematic viscosity : $[10^{-6} \text{ m}^2 / \text{ s}]$	28.20	33.64
Thermal diffusivity : $[10^{-7} \text{ m}^2 / \text{ s}]$	399.86	475.89
Prandtl-Number :	0.71	0.71

