Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

M. E. - SEMESTER – II • EXAMINATION – SUMMER • 2013

Su	bject	code: 1724504 Date: 03-06-2013	
	-	Name: Advance Electrical Machines	
		10.30 am – 01.00 pm Total Marks: 70	
In	1. 2.	ctions: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Explain construction and principle of operation of Permanent Magnet Hybrid Stepper Motor. Draw static characteristics of PMH stepper motor (both torqueangle and torque-current).	07
	(b	With help of suitable block diagram, explain closed loop control of a Brushless DC motor with voltage-fed inverter.	07
Q.2	(a) (b)	Describe various types of stepper motor. Define following terms for a stepper motor: micro-stepping, holding torque, detent torque, pull in torque, pull out torque, slew rate, step position error, step angle.	07 07
	(b)	OR Compare radial and axial permanent magnet BLDC motors.	07
Q.3	(a)	Briefly explain switched reluctance motor control scheme using asymmetric bridge converter.	07
	(b)	Illustrate principle of operation of a linear induction motor and its applications. OR	07
Q.3	(a)	Compare direct measurement method with loss segregate method of efficiency evaluation of a motor.	07
	(b)	Define condition monitoring. How it is beneficial for electrical assets?	07
Q.4	(a) (b)	How wind mill generator differs from a synchronous alternator? Illustrate fault detection and diagnosis techniques used for transformer. OR	07 07
Q.4	(a) (b)	How an energy efficiency motor differs from standard motor. In a factory a 4-pole, 400V, 3-phase, 37.38 H.P. Induction motor is operated for 16 hrs per day and 325 days per year at full load. The electricity tariff rate is Rs. 1.80/kWh. Take rate of interest and depreciation @12%. Determine: a. Saving in the cost of energy by use of EEM, b. Pay-back period in months, c. ROI (Return on investment).	07 07
Q.5	(a)	Derive relation between Magnetic Field Energy and Mechanical Force considering non-linearity of magnetic core.	07
	(b)	Transform stationary variable the rotating reference frame for an inductive element.	07
		OR	
Q.5	(-)	Write short notes on:	07
	(a) (b)	Equation of transformation in reference frame theory. Magnetically coupled circuits.	07 07
	()		
