1

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – SUMMER • 2013

Subject code: 710703N Subject Name: Modern Control System Time: 10.30 am – 01.00 pm Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 (a) Express matrix A as a sum of symmetric and a skew symmetric matrix where, 07

$A = \begin{bmatrix} 2 & 3 & -3 \\ 5 & 6 & -6 \\ -7 & 0 & -9 \end{bmatrix}$

(b) Define and discuss the concept of state, state variables, state vector and state space.**0.2** (a) Find the inverse and rank of matrix A, where

 $\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & -2 \\ 1 & 0 & -2 \end{bmatrix}$

(b)	Write a short note on limitations and advantages of state variable approach.	07
	OR	
(b)	Explain positive definite, positive semi definite and indefinite function.	07

Q.3 (a) Explain in brief concepts and definition of Controllability and Observability.
 (b) Check for the controllability and the observability of the system given by
 07
 07

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 3 & -1 & -1 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} u$$

$$[y_1] = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

OR

- Q.3 (a) State the controllability and derive the condition for checking the same for a given 07 system.
 - (b) Consider the system described by the following

$$\begin{bmatrix} \dot{x}_1\\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1\\ -2 & -1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} + \begin{bmatrix} 0\\ 1 \end{bmatrix} u$$
$$x = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1\\ x_1 \end{bmatrix} + u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_2 \end{bmatrix} + u$$

Find whether it is state controllable, output controllable and observable

Q.4 (a) Write a set of state equations for the network shown in bellow Fig. Choose i_1 , i_2 , 07 and v_c as state variables.

Total Marks: 70

Date: 13-06-2013

Enrolment No._____

07

07

07

(b) Obtain state model by direct decomposition for the transfer function of the system, 07 whose transfer function is,

$$G(S) = \frac{S^2 + 5S + 6}{S(S+1)(S^2 + 9S + 20)}$$

OR

Q.4 (a) Obtain the state space representation for the armature controlled d.c. motor shown 07 in Fig. below, given Moment of inertia of motor and load = J, Coefficient of friction of motor and load = f, Back emf constant = Kb and motor torque constant = KT

(b) Obtain the state model of system, whose transfer function is by parallel 07 decomposition.

$$G(S) = \frac{S^3 + 3S^2 + 2S}{S^3 + 12S^2 + 47S + 60}$$

- Q.5 (a) Explain the Liapunov stability criterion for the Linear Time Invariant System. 07
 - (b) An autonomous system is given bellow Examine the stability using Liapunov 07 theorem.

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
OR

- Q.5 (a) Explain Krasovskii method for the determination of stability.
 - (b) Apply Krasovskii method to assess the stability of the equilibrium point x(0) of the **07** system given below

$$\begin{aligned} x_1 &= -x_1 \\ \dot{x_2} &= x_1 - x_2 - (x_2^3)/3 \end{aligned}$$

07