GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – SUMMER • 2013

Subject code: 711602NDate: 04-06-2013Subject Name: Advance Kinetics and Reaction EngerringTime: 10.30 am - 01.00 pmTotal Marks: 70							
Instructions:							
	1.	Attempt all questions.					
	2.	Make su	Aake suitable assumptions wherever necessary.				
	3.	Figures to the right indicate full marks.					
	4.	All notat	All notations have conventional meaning.				
Q.1	(a)	Derive	Derive dispersion model with usual notations				
	(b)	derive	For an unreacted core model for spherical particles of unchanging size, 07 derive relation between time, radius and conversion for gas film control resistance				
Q.2	(a)		With a neat diagram write about contacting patterns for heterogeneous 0 reactions.				
	(b)	Describ	Describe kinetic regimes for mass transfer and reaction for fluid-fluid 07 reactions.				
		reaction	OR				
	(b)	Discuss	Discuss determination of rate controlling step for fluid particle reactions 0				
Q.3	(a) (b)		For a bio reactor describe in detail about stoichiometry and rate laws Discuss different models for Fluidised bed reactor				
			OR				
Q.3	(a)	Derive performance equation for a fluidized bed reactor 0					
	(b)	Derive equation for evaluating conversion for a Moving bed reactor					
Q.4	(a)	Discuss	Discuss design criteria for Bubble column reactor 07				
C.	(b)		Discuss working of trickle bed reactor with a neat sketch 0				
			OR				
Q.4	(a)	Describ	Describe advantages and disadvantages for bubble column reactor. 0				
	(b)	For a tr	For a trickle bed reactor discuss flow regimes in detail				
Q.5	(a) (b)		Discuss in detail formulation of chemical reactor optimization problem 07 Describe slurry reaction kinetics. Give industrial applications of slurry 07				
			reactors				
			OR				
Q.5	(a)		Write a short note onõLoop reactorsö with neat sketch. 07				
	(b)	-	A slurry reactor is used to study the kinetics of slurry reaction. The 07				
			following results are obtained when liquid volume is 220 cm ³ .Assuming				
			chemical step on catalyst surface as rapid. Develop rate equation for rate of				
			reaction based on unit volume of slurry.				
		Run	Gas liquid	gm-cat/cm ³	Rate based on		
			interfacial area, cm ²	liquid	interfacial area, -r _A "		
		1	10	0.1	10		
		2	10	0.45	25		
		3	45	0.1	2.5		
		4	45	0.45	10		