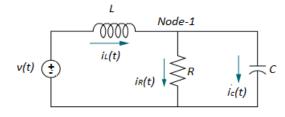
GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – SUMMER • 2013

		code: 712904NDate: 17-06-2013Name: Advanced Control Theory	
Ti	me: 1	0.30 am – 01.00 pm Total Marks: 70	
In	1. 2. 3.	tions: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Notations used have usual meaning.	
Q.1	(a)	Define and explain following terms, (1) State. (2) State space. (3) State variable.	07
	(b)	A system is having following matrix, $A = \begin{bmatrix} 4 & 1 & -2 \\ 1 & 0 & 2 \\ 1 & -1 & 3 \end{bmatrix}$ Find the eigenvalues and eigenvectors.	07
Q.2	(a)	A control system has a transfer function given by, $G(s) = \frac{s+3}{(s+1)(s+2)^2}$ Obtain the state space model using parallel decomposition.	07
	(b)	Construct the Nyquist plot for a feedback control system whose open-loop transfer function is given by, $G(s)H(s) = \frac{K(1+s)}{(1-s)}$	07
		And comment on the stability. OR	
	(b)	Draw the complete Nyquist plot for a system whose open-loop transfer function is,	07

$$G(s)H(s) = \frac{K}{s(s+2)(s+10)}$$

Also determine the value of K for closed loop system is stable.


Q.3 (a) For the system represented in state space as follows:

$$\overset{\bullet}{x} = \begin{bmatrix} 1 & 3 \\ -4 & -6 \end{bmatrix} x + \begin{bmatrix} 1 \\ 3 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 4 \end{bmatrix} x$$

Convert the system to one where the new state vector, z, is

$$z = \begin{bmatrix} 3 & -2 \\ 1 & -4 \end{bmatrix} x$$

07

OR

		OR	
Q.3	(a)	Explain the mapping between s plane and z plane.	07
-	(b)	Find the z-transform of the discrete ramp function.	07
	(~)	$g(k) = k, \ k \ge 0$	0.
		$g(k) = 0, \ k < 0$	
Q.4	(a)	Write a brief note on Phase plane Analysis with suitable example.	07
	(b)	Obtain a transfer function of a system if,	07
		$\dot{x} = \begin{vmatrix} -5 & -1 \\ 3 & -1 \end{vmatrix} x + \begin{vmatrix} 2 \\ 5 \end{vmatrix} u$	
		$y = \begin{bmatrix} 1 & 2 \end{bmatrix} x$	
		OR	
Q.4	(a)	Explain Variable structure control in control system with appropriate example.	07
-	(b)	Determine the controllability and observability of the following system,	07
	(-)		-
		$\bullet \begin{vmatrix} 1 & 1 & 2 \\ \bullet & \end{vmatrix} \begin{vmatrix} 2 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ $	
		$x = \begin{vmatrix} 0 & -1 & 5 \end{vmatrix} x + \begin{vmatrix} 1 \end{vmatrix} u$	
		$\dot{x} = \begin{vmatrix} -1 & 1 & 2 \\ 0 & -1 & 5 \\ 0 & 3 & -4 \end{vmatrix} x + \begin{vmatrix} 2 \\ 1 \\ 1 \end{vmatrix} u$	
		$y = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} x$	
Q.5	(a)	Determine the stability of following system with closed loop transfer function,	07
-	· · ·	10	
		$T(s) = \frac{10}{s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3}$	
	(b)	5 1 25 1 55 1 05 1 55 1 5	07
	(b)	Obtain state space representation of field controlled DC motor.	07
		OR	~ -
Q.5	(a)	Write a short note on Optimal Control system.	07
	(b)	Explain state observer and its design procedure with illustration.	07
