Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

M. E. - SEMESTER – I • EXAMINATION – SUMMER • 2013

Sub	ject	code: 713104N Date: 17-06-2013	
	-	Name: Bio-Signal Processing	
Tim	ie: 10	0.30 am – 01.00 pm Total Marks: 70	
Inst	truc	tions:	
	1. 2. 3.	ı v	
Q.1	(a) (b)	Explain all practical consideration for signal conversions. Explain rubber membrane analogy for Z plane with example.	07 07
Q.2	(a)	Determine Inverse Z transform $X[z] = \underbrace{(8Z - 19)}_{(Z^2-5Z+6)}$	07
	(b)	Explain Time shifting and time reversal properties of Z transform. OR	07
	(b)	Design a 50Hz notch filter. Draw signal flow graph and pole zero plot.	07
Q.3	(a)	Obtain co-efficients of an FIR Low pass filter to meet specifications given below using the window method. Passband Edge frequency 1.5KHz, Transition width 0.5 KHz Stopband attenuation > 50 dB, Sampling frequency 8 KHz	07
	(b)	Explain digital integration techniques with their pole-zero plots. OR	07
Q.3	(a)	Design an 11 co-efficient FIR low pass filter, whose cut off frequency fc equal to 2fs/11.	07
	(b)	Explain the Biomedical applications of the adaptive filters.	07
Q.4	(a)	Explain simple one pole recursive filter with block diagram and their response to a unit impulse for different position of pole.	07
	(b)	A band pass digital filter is required to meet the following specifications: A complete signal rejection at dc and 250 Hz; A narrow pass band centered at 125 Hz; A 3 dB bandwidth of 10 Hz, Assuming a sampling frequency of 500Hz, obtain transfer function of the filter, by the pole-zero method, and its difference equations.	07
O 4	(.)	OR	0.5
Q.4	(a)	Explain structure of an adaptive filter noise canceller with necessary equations and diagram.	07
	(b)	Design first order High pass digital filter whose cutoff frequency is 1KHz at sampling frequency of 10 ⁴ sample per second by using Bilinear Z-transform method.	07
Q.5	(a)	What is the advantage of integer filter over others? Explain basic design concepts of Integer filter.	07
	(b)	Explain steps of ECG interpretation. OR	07
Q.5	(a)	Explain hardware design concepts of portable arrhythmia monitor.	07
	(b)	Prove that signal averaging improves the Signal to noise ratio.	07