Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

M. E. - SEMESTER - I • EXAMINATION - SUMMER • 2013

Subject code: 714104N Date: 17-06-2013

Subject Name: Digital Image Processing and Applications

Time: 10.30 am – 01.00 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Give the algorithm for getting connectivity in the image using the N_4 07 neighborhood.
 - (b) In the image shown in Fig 1 compute D4, D8 and Dm distances between pixels p and q for V= {2,3,7}. Take pixel p as center of the image and find the distances for all other pixels considered as q pixels.

	1	2	2	2	3	q
	5	3	5	6	7	
	5	2	5	5	6	
	7	5	1	7	7	
p	7	4	2	3	1	

Fig 1: Image segment of 5X 5

- Q.2 (a) Explain the homomorphic filtering in detail. What are the advantages of homomorphic filtering; explain with the help of suitable derivations.
 - (b) Apply median operator on image shown in Fig 2 and conclude about the results. 07 (Use zero padding).

1	1	7	7	7	8	8	8
6	6	6	5	5	5	1	8
6	6	6	5	5	1	8	8
8	7	7	5	1	8	8	8
8	8	8	5	5	8	8	8
8	8	8	5	1	7	1	8
8	8	8	5	5	7	1	8
8	8	8	5	5	7	1	8

Fig 2: Image segment of 8 X 8 size

OR

(b) Explain the spatial domain filtering technique in detail.

07

07

- Q.3 (a) Explain the histogram equalization technique in detail with suitable example.
 - (b) The basic approach used to approximate a discrete derivative involves taking differences of the form f(x+1,y) ó f(x,y)
 - 1) Obtain the filter transfer function, H(u,v), for performing the equivalent process in the frequency domain.
 - 2) Show that H(u,v) is a highpass filter.

OR

- **Q.3** (a) Explain the histogram matching technique in detail with suitable derivations. 07
 - (b) Discuss the basic properties in frequency domain of a digital image. State the two dimensional DFT and its inverse.

Q.4	(a)	Discuss various filters used for detecting lines and edges in image, and give the mathematical logic behind the filter			
	(b)	Discuss: Hough transform in X-Y coordinate system. OR	07		
Q.4	(a)	Explain the basic morphological operators: dilate and erode with suitable example.	07		
	(b)	State different applications of image morphology and explain in detail.	07		
Q.5	(a) (b)	Explain the morphological algorithm: Skeletonize in detail. Explain the canny edge detection algorithm in detail.	07 07		
o -		OR	0=		
Q.5	(a)	State different applications of Digital Image Processing and explain any one application in detail.	07		
	(b)	Explain the global thresholding technique with suitable derivations.	07		
