		GUJARAT TECHNOLOGICAL UNIVERSITY M. E SEMESTER – I • EXAMINATION – SUMMER • 2013	
Subje	ect c	code: 714303N Date: 13-06-2013	
Subje	ect I	Name: Theory of Elasticity and Plasticity	
Time	:10	.30 am – 01.00 pm Total Marks: 70	
Instr	uct	ions:	
	1.	Attempt all questions.	
	2. 3.	Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Discuss energy approach for stability of columns and derive the general equation to get critical load P using energy approach ($Pcr = 1 + y = T$)	07
	(b)	Derive strain-displacement relation in polar co-ordinate system.	07
Q.2	(a)	Derive the basic differential equation for equilibrium in Cartesian coordinate system.	07
	(b)	Is the following 2-D state of plane strain is possible? Check. X = 7x2y - 3x2 + 7xy2 + 9 Y = 9x3 + 8xy + 2x2 + 8	07
		$XY = \frac{1}{2}$ $XY = 17x^2y + 2xy + 15$	07
	(h)	UK For the following state of stresses, find the principal stresses and the	0/
	(0)	direction cosines of any ONE principal stresses. Normal stresses: $xx=300$ MPa, $yy = 200$ MPa, $zz = 100$ MPa, and Shear stresses: $xy = 50$ MPa, $yz = 50$ MPa, $zx = 50$ Mpa.	
Q.3	(a)	Derive the basic differential equation for beam column subjected to axial	07
-	(b)	compressive force P and distributed load of intensity Q. Discuss the principle of imperfection approach for stability of column and	07
		derive the equation for critical load for end condition as one end fixed and one end free.	
		OR	
	(b)	Define co-efficient of end restrained using beam column theory. Derive basic equations for statically indeterminate beam column with elastic restraints.	
0.4	(я)	Explain Airves stress function for a circular plate with hole	10
2	(b)	A cylinder 100 mm (internal) is subjected to an internal pressure 60	04
	. ,	MPa. There is no external pressure. If the allowable stress in the metal is	
		160 Mpa, calculate external diameter.	
0.4		OR	
Q.4	(a)	Locate principal planes and obtain principal strains at point $(3, 01)$ for the following system of strains: $y = y_0y_1 + 5y_0 + 3y_0 + 2y_0 + 12$	07
		$x = x_{2} + 3x_{2} + 3x_{3} + 2y_{3} + 12$ $y = x_{2} + 3y_{2} + 2x_{4} + 5y_{3}$	
Q.4	(b)	$x_Y = 3x_2 + y_2 \delta \frac{1}{2} x_4 + y_4$ where strains are in nm and x and y in mm. Enlist the assumptions involved in the theory of torsion of a long bar, subjected to twisting moment: T. Also, write steps in deriving the equation: $\nabla_2() = \delta 2G$ with usual notations	07

- Q.5 (a) Derive general equation of deflection to study initial effect of curvature using imperfection approach.
 - (b) Derive the basic equation of equilibrium for column in bent configuration subjected to dynamic force. Also explain mode shapes of buckling.

OR

- Q.5 (a) Using Swift construction, find normal and resultant shear stress on a plane 07 whose normal has directions cosines are l = 0.342, m = 0.405 respectively w.r.t. Principal stresses: P1 = 900 MPa (Tensile), P2 = 200 MPa (Tensile) and P3 = 300 MPa (Compressive).
 - (b) For the curved beam subjected to moment: M = 150 kJ, internal and external radii: a = 150 mm and b = 350 mm respectively, calculate radial and transverse stresses at inner, outer and every quarter thickness points and plot their variations using the following equations with usual notations:
 Radial stress: r = 6 4M/N [a2b2/r2 ln (b/a) + b2 ln (r/b) + a2 ln (a/r)]
 Tangential stress:

 $= \acute{0} \, _{4M/N} \left[\acute{0} \, a_2b_2/r_2 \ln \left(b/a\right) + b_2 \ln \left(r/b\right) + a_2 \ln \left(a/r\right) + b_2 \, \acute{0} \, a_2\right]$ Here; N = (b_2 $\acute{0} \, a_2$) 2 $\acute{0} \, 4 \, a_2b_2 \left[\ln \left(b/a\right)\right]$ 2

07