GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – SUMMER • 2013

Subject code: 714304NDate: 17-06-2013Subject Name: Numerical Methods in Geotechnical EngineeringTime: 10.30 am - 01.00 pmTotal Marks: 70Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- Q.1 (a) Enlist methods for solution of algebraic and transdental equations and explain 07 any one in brief.
 - (b) Apply Newtonøs backward interpolation formula to determine f(1.18)

Х	1	1.1	1.2	1.3	1.4
у	0.841	0.891	0.932	0.963	0.985

Q.2 (a) The velocity v in m/s of the rocket measured at $\frac{1}{2}$ second interval is

t(Sec)	0	0.5	1.0	1.5	2.0
V(m/s)	0.000	11.860	26.335	41.075	59.051
TT (1	1.00	• ,	.1 1	C (1	1 4 4 4 1 0

Use central difference to approximate the acceleration of the rocket at t= 1.2 sec. and t=1.75 sec.

(b) Find real root of the equation $f(x)=3x^3+10x^2+10x+7=0$ correct to four decimal 07 point using iteration method.

OR

- (b) Find real root of the equation $2x = \cos x + 3$ correct to four decimal point using 07 Newton-Raphson method.
- Q.3 (a) Explain Trapezium rule & mid ordinate rule for numerical integration.
 - (b) A relationship between $\pm x \phi$ and $\pm \log x \phi$ is as follows

Х	4	4.2	4.4	4.6	4.8	5	5.2
$\log(x)$	1.3863	1.4351	1.4816	1.5261	1.5686	1.6094	1.6487

Evaluate Pog(x) dx over a range of 4 to 5.2 using Simpsonøs one third rule .

OR

- Q.3 (a) Evaluate the sum $S=3^{1/2}+5^{1/2}+7^{1/2}$ to four significant digit and find its absolute 07 and relative error, if each digit are rounded off 2 decimal digits.
 - (b) Use method of least square to fit a curve $y = ae^{bx}$ for given data and find the 07 constants.

Х	0	2	4
Y	5.012	10	31.62

Q.4 (a) Find the largest Eigen-values and corresponding Eigen vector for following 07 matrix using power method,

- (b) (i) Write the properties of eigen value
 - (ii) Define absolute, relative and percentage error

07

07

07

07 07 Q.4 (a) Fit a second degree parabola in the following data.

$Y=a+bx+cx^2$							
Х	0.0	1.0	2.0	3.0	4.0		
Y	1.0	4.0	10.0	17.0	30.0		

07

		11	0.0	1.0	2.0	5.0	H. 0		
		Y	1.0	4.0	10.0	17.0	30.0		
	(b)	Find the	Eigen-va	lues and	correspo	nding Eig	gen vecto:	r for following matrix.	07
			$ \left(\begin{array}{c} 1\\ 0\\ 1 \end{array}\right) $	$\begin{array}{c} 0 & 1 \\ -6 & 0 \\ 0 & 1 \end{array}$					
Q.5	(a) (b)		-	-			-	olation method. del method.	07 07

X+9y-z=10 2x-y+11z=20 10x-2y+z=12

OR

- Q.5 (a) Compute deflections at atleast three points, of fixed beam subjected to 07 uniformly distributed load w kN/m on the span L. Use finite difference techniques.
 - (b) Using finite difference techniques, find out deflections for a simply supported uniform square plate subjected to uniformly distributed load w kN/m²
