GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER - III • EXAMINATION - SUMMER • 2013

Subject code: 733001

Date: 13-05-2013

Total Marks: 70

Subject Name: Advance Process Optimization Time: 10.30 am – 01.00 pm

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 07 **O.1** (a) Explain following terms in context to optimization: constraints, objective function, feasible region, unimodal function, continuous function, derivative discontinuity, convex function.
 - A poster is to contain 300 cm^2 of printed matter with margins of 6 cm at the 07 **(b)** top and bottom and 4cm at each side. Find the overall dimensions that minimize the total area of the poster.
- A liquid phase, isothermal, reversible first order, exothermic reaction **O.2** (a)

A
$$\underset{k_2}{\overset{k_1}{\longleftarrow}}$$
 B

is to be carried out in a CSTR. The reactor space time is to be held constant at space time τ . The feed is pure A. Show that the choice of optimum temp which will maximize conversion of A is the one which will maximize $k_1 \tau$ $\frac{1}{1+k_2\tau}$

- f f f f Х Х Х Х 2 141 8.1 155 11 62 20 89 2.2 142 8.2 96 12 64 25 91 3 87 13 92 143 8.5 74.5 25.5 5 145 8.8 78 14 75 26 97 15 98 6 150 9.1 69 78 26,2 7 99 9.9 60 16 80 26.3 153 8 154 10.1 51 16.5 83 26.6 103
- Search for an minimum value of discreet function f(x) using following data: **(b)**

OR

Find the minimum of $y = \frac{2}{x_1 x_2} + \frac{3}{x_2} + 4x_1 x_2^2$ using geometric programming **(b)**

and also find the location of minimum.

- Q.3 **(a)** A length of wire is to cut in two parts. One portion is to be bent into the form 07 of a circle, and the other into the form of a square. In what ratio must the wire be cut if the sum of the areas enclosed by the circle and square is to the least possible?
 - (b) Using the method of Lagrangian multipliers find the minimum of $y = 4x_1^2 + 5x_2^2$ subject to $2x_1 + 3x_2 = 6$.

OR

Find the value of x in the interval (0,1) which minimizes the function 07 **O.3** (a) f = x(x-1.5) with ± 0.05 using Golden Section search technique.

07

07

07

07

	(b)	Compare Two-point Equal Interval search, Dichotomous search, Golden Section search and Fibonacci search technique of Region Elimination with working equations of each.	07
Q.4	(a)	 Explain the interpretations with examples for Zero coefficient in column. No positive ratio. Identical values of smallest positive ratio. while solving any linear programming problem using simplex method. 	07
	(b)	Minimize given multivariable function, using single variable technique. $f(x) = x_1^4 - 2x_1^2 x_2 + x_2^2 + x_1^2 - 2x_1 + 5$ OR	07
Q.4	(a)	Explain the basics of population based search techniques, List out different steps in GA and discuss role of fitness selection and survival selection.	07
	(b)	Explain the basics of Multi Objective Optimization (MOO) and discuss chemical engineering applications.	07
Q.5	(a)	Discuss role of Quadratic programming and successive quadratic programming for optimization in chemical engineering with examples.	07
	(b)	Giving the examples of Integer and mixed integer programming, list out methods to solve them discussing strength and weakness.	07
OR			
Q.5	(a)	Explain the concept and algorithm of Simulated Annealing technique with example.	07
	(b)	Explain TABU search optimization technique with algorithm and example.	07