GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER-IV • EXAMINATION – SUMMER 2013

Subject Code: 742001

Subject Name: Soil Structure Interaction

Date: 14-05-2013

Time: 10.30 am - 01.00 pm

Total Marks: 70

- Instructions:
 - 1. Attempt all questions.
 - 2. Make suitable assumptions wherever necessary.
 - 3. Figures to the right indicate full marks.
- Q.1 (a) Write a detailed note on geotextiles giving a list of various types of geotextiles. 07
 - (b) Give the basic concept of soil-structure interaction and state how it differs from 07 the conventional subject of soil mechanics and foundation engineering.
- Q.2 (a) Define liquefaction. Explain briefly various factors influencing the process of 07 liquefaction.
 - (b) Check the liquefaction potential of a site for a given data. Take $a_{max} = 0.3g$, 07 ground water table is at 2.0m depth.

Layer No.	1	2	3	4	5
Depth, m	0-2	2-6	6-8	8-12	12-16
Unit weight, kN/m ³	19.2	19.3	19.4	19.3	19.6
Ν	12	12	5	15	4
FC, %	5	5	35	5	35
r _d	0.98	0.95	0.94	0.85	0.75
	OD				

OR

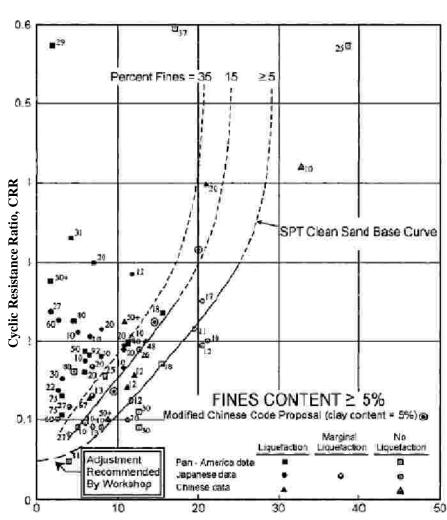
(b) Enlist various liquefaction mitigation techniques. Explain any one briefly.

- **Q.3** (a) Determine the depth of embedment for a cantilever sheet pile for the given data using approximate method of analysis: (1) height of cohesionless backfill above dredge line = 7.0m, (2) unit weight of soil = $1.8T/m^3$ (3) $\Phi = 38^\circ$ and (4) $\delta = 20^\circ$
 - (b) Draw the pressure distribution diagram for an anchored sheet pile having noncohesive backfill throughout and give the analysis of finding depth of embedment and force in the anchor rod.

OR

- **Q.3** (a) Determine the depth of embedment of the anchored sheet pile. Also determine **07** the force per metre of the wall. Assume free earth support condition. (1) height of cohesionless backfill above dredge level = 8.0m, (2) anchor depth below the ground surface = 3.0m (3) unit weight of soil = 16 kN/m^3 (4) $\Phi = 35^\circ$
 - (b) What are different types of sheet pile walls? Draw the sketches showing the 07 pressure distribution.
- Q.4 (a) Explain with the help of a neat sketch various elements of a reinforced earth 07 wall, stating the specifications, requirements and functions of each element.
 - (b) Design a geotextile wall of height 5.0m for internal stability. The surcharge acting is 18kPa. The cohesionless backfill is having unit weight of 18kN/m³ and angle of internal friction is 35°. The ultimate tensile strength of the geotextile is 45kN/m.

07


- Q.4 (a) A rectangular combined footing with L = 5.5m and B = 1.8m is having EI = 07 1300MN/m². A 1000kN load is acting at 0.6m from the left edge and 1500kN load is acting at a distance of 1.3m from the right edge. The modulus of subgrade for plate is determined to be 75MN/m³ within a clayey foundation soil. Divide the foundation in two elements and by FDM determine settlement, contact pressure, SF and BM at the nodal points.
 - (b) Enlist the different elastic methods of analysis for a beam on elastic foundation. 07 Briefly explain Wrinkler's model. State the limitations of the same if any.
- Q.5 (a) Draw and explain the settlement profiles for perfectly flexible footings resting 07 on clayey strata and sandy strata. What should be done to achieve uniform settlement?
 - (b) Briefly explain various factors affecting modulus of subgrade reaction.

OR

Q.5 (a) A rectangular combined footing with L = 6.0m and B = 1.6m is having EI = 07 1200MN/m². A 1200kN load is acting at 1.0m from the left edge and 1200kN load is acting at a distance of 1.0m from the right edge. The modulus of subgrade for plate is determined to be 70MN/m³ within a clayey foundation soil. Divide the foundation in four elements and by FDM determine settlement, contact pressure, SF and BM at the nodal points.

(b) Solve Q-5 (a) using Rigid method and compare the results so obtained.

Corrected Blow Count, (N1)60

07

07