	Sub Tin	GUJARAT TECHNOLOGICAL UNIVERSITY M. E SEMESTER – II • EXAMINATION – SUMMER • 2014oject code: 1710422Date: 23-06-2014oject Name: Digital Signal Processing and Applications ne: 02:30 pm - 05:00 pmTotal Marks: 70tructions:1. Attempt all questions.1. Attempt all questions.2. Make suitable assumptions wherever necessary.3. Figures to the right indicate full marks.	
Q.1	(a)	Define stable and causal system. Give an example of stable and causal LTI system expressed by a difference equation. How from difference equation stability and causality can be verified?	07
	(b) (1)	Show that the accumulator and the moving average systems are both Linear Time-Invariant (LTI) systems. Under which condition moving average system is causal?	04
	(2)	Determine the inverse z-transform of X (z) = z^2 , if x[n] is two-sided sequence. $z^2 - 1.5z + 0.5$	03
Q.2	(a) (b)	Explain the properties of Z transform. Find the inverse DFT of X (k) = $\{6,(-1-j),0,(-1+j)\}$	07 07
	(b)	OR Determine the input x[n] of the system with impulse response h[n] = $\{1, 2, 3, 1\}$ and output y[n] = $\{2, 5, 9, 9, 8, 7, 2\}$.	07
Q.3	(a) (b)	Explain Decimation-In-Time Algorithm. Determine linear convolution of the given sequences $x[n] = \{1, 3\}$ & $h[n] = \{3, 2\}$ using DFT and IDFT methods. Compare it with circular convolution of $x[n]$ & $h[n]$. OR	07 07
Q.3	(a) (b)	Derive the DFT of the sample data sequence $x(n) = \{\underline{0}, 2, -1\}$ and compute the Corresponding amplitude and phase spectrum. Explain circular convolution with the help of an example.	07 07
Q.4	(b) (a) (b)	Give differences between DIT and DIF FFT algorithms. A continuous time signal is sampled at a sampling rate of 20 kHz and the DFT of 512 samples computed. Determine the frequency spacing between spectral samples. Justify your answer.	07 07 07
Q.4	(a) (b)	OR Give the difference between overlap-save method & overlap-add method. Discuss any two applications of DSP.	07 07
Q.5	(a)	Explain design of FIR filters by Kaiser window and mention its advantages against the commonly used windows.	07
	(b)	With the help of a neat sketch, explain Digital Signal Processor architecture. OR	07
Q.5	(a) (b)	Describe how sampling rate can be reduced by a non integer factor. What are the advantages and disadvantages of non-parametric methods for power spectrum estimation? Determine the frequency resolution of the Bartlett, Welch and Blackman-Tukey methods of power spectrum estimation for quality factor $Q=10$. Assume that overlap in Welchøs method is 50%. Given the length of the sample sequence is 1000.	07 07