Seat No.: ______ Enrolment No. _____ GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – II • EXAMINATION – SUMMER • 2014 Subject code: 1721604 Date: 20-06-2014 Subject Name: Property Prediction for Mixtures Time: 02:30 pm - 05:00 pm Total Marks: 70 Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full mark.
- Q.1 (a) Starting with following two equations:

$$\mathbf{T} \cdot \mathbf{dS} = \mathbf{Cp} \cdot \mathbf{dT} - \mathbf{T} \frac{\delta \mathbf{V}}{\delta \mathbf{T}} \bigg|_{\mathbf{P}} \mathbf{dP} \text{ and } \mathbf{T} \cdot \mathbf{dS} = \mathbf{Cv} \cdot \mathbf{dT} + \mathbf{T} \frac{\delta \mathbf{P}}{\delta \mathbf{T}} \bigg|_{\mathbf{V}} \mathbf{dV}$$

Prove the following equations:

$$Cp \circ Cv = \delta T \left(\frac{\delta V}{\delta T}\right)_{P}^{2} \cdot \left(\frac{\delta P}{\delta V}\right)_{T} \quad \text{and} \quad \frac{Cp}{Cv} = \frac{\frac{\delta P}{\delta V}}{\frac{\delta P}{\delta V}}_{T}$$

- Q.2 (a) Using concept of Hypothetically Ideal Component (Carlson and Coulburn Method), 05 explain in detail how constants of Van Laarøs Equations could be determined conveniently?
 - (b) Calculate the degree of vaporization of a ternary system containing feed having molar 10% propane, 65% n-butane and 25% n-pentane is flashed in a separator at t=5 °C and P=600 mm Hg. The values of equilibrium constants for phase equilibria under above mentioned conditions are K₁=6.34 for propane, K₂=1.37 for n-butane and K₃=0.32 for n-pentane.

SD)

Derive the equation you may utilize while solving this problem starting from first principles.

OR

(b) A mixture of hydrocarbon having composition 10% methane, 20% ethane, 30% 09 propane, 15% iso-butane, 20% n-butane and 5% pentane is flashed in a separator at t=46 °C and P=10 atm. The values of K at 46 °C and 100 atm for different components are as under.

Component:	Methane	Ethane	Propane	iso-Butane	n-Butane	Pentane
K Value:	17	3.1	1.0	0.44	0.32	0.096

Show that the degree vaporization under above mentioned conditions is 50%. Derive the equation you may utilize while solving this problem starting from the first principles.

- Q.3 (a) Outline the concept of õHypothetical Ideal Gas Stateö and derive relevant generalized 07 equation for $\Delta H'_{T,P}$ under reduced state conditions using equation of state PV=ZRT.
 - (b) Explain in detail calculations of Energy function 6 Enthalpy (H) at any temperature (T) 07 and any pressure (P) under ideal conditions.

OR

Q.3 (a) Outline the concept of õHypothetical Ideal Gas Stateö and derive relevant generalized 07 equation for $\Delta S'_{T,P}$ under reduced state conditions using equation of state PV=ZRT.

1

14

- (b) Explain in detail calculations of Energy function 6 Entropy (S) at any temperature (T) 07 and any pressure (P) under ideal conditions.
- Q.4 (a) Explain the concept of õPartial Molal Quantitiesö ó (PMQ). Elaborate the evaluation of 07 õPartial Molal Enthalpiesö for binary mixture by Graphical Technique.

OR

- (a) Define Viscosity. Enlist the five methods for prediction of viscosity for solutions and 07 explain any one of the methods in detail.
- Q.4 (b) Explain in detail, prediction of VLE data for binary mixture under non-ideal conditions. 07

OR

- (b) Explain the term-Thermal conductivity. Enlist the various methods for prediction of 07 thermal conductivity of pure liquids and explain any one of the methods in detail.
- **Q.5** Critically evaluate any **Four** of the followings:
 - (i) Estimation of low pressure gas viscosity.
 - (ii) Use of Maxwelløs Relations in property prediction.
 - (iii) Derive the following relationship for properties C_P , $C_V \& S$.

$$d\mathbf{S} = \frac{\mathbf{C}_{\mathrm{V}}}{\mathrm{T}} \cdot \frac{\partial \mathrm{T}}{\partial \mathrm{P}} \bigg|_{\mathrm{V}} d\mathbf{P} + \frac{\mathbf{C}_{\mathrm{P}}}{\mathrm{T}} \cdot \frac{\partial \mathrm{T}}{\partial \mathrm{V}} \bigg|_{\mathrm{P}} \cdot d\mathbf{V}$$

- (iv) Various methods to evaluate property ó õfugacityö.
- (v) Evaluation of Activity Coefficients for binary mixture.

14