Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

M. E. - SEMESTER – II • EXAMINATION – SUMMER • 2014

Subject code: 1721606 Date: 23-06-2014

Subject Name: Chemical System Modeling and Simulation

Time: 02:30 pm - 05:00 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. All notations have conventional meaning.
 - Q.1 (a) Define a Model. Give classification of modeling. Enlist steps of 07 formulation of Chemical Engineering Model.
 - (b) For an unsteady state single stage solvent extraction, derive 07 relation for fraction extracted with usual notations.
 - Q.2 (a) N₀ gm of solid material was placed in W gm of water at time t₀. 07 The liquid was continuously stirred and maintained at constant temperature. At the end of very long period of time N_f gm of solid remains undissolved which can assumed as zero. The original solid consisted of S spheres each of initial diameter D₀. Obtain variation of diameter of solid as function of time.
 - (b) Using method of least squares find a straight line that fits the following data

5 aara					
X	1	2	3	4	5
у	14	27	40	55	68

OR

- (b) Formulate a model for concentration profile for fixed bed catalytic 07 reactor with usual notations.
- Q.3 (a) For a jacketed kettle heated through surface by condensing steam, 07 develop a model for variation of temperature with time.
 - (b) Formulate a model for temperature profile on a rectangular fin with 07 usual notations listing all assumptions made.

OR

- Q.3 (a) For consecutive reversible reactions in series
 - A B and B C
 Derive relation for rate of disappearance of A, Number of moles of A and various rate constants
 - (b) Compute the fraction of solute that can be extracted in counter current solvent extraction at steady state with N stages (for values of N from 1 to 30) using the same numerical values of S=12R, m=1/8 and c=0.1 kg/m³, which are used for single stage extraction, compare and comment the results
- Q.4 (a) Discuss sequential modular approach. List general purpose 07 sequential modular program structured components

07

07

	(b)	A chemical process is represented by following set of equations	07
	` ´	$f_1(x_1, x_4) = 0; f_2(x_2, x_3) = 0; f_3(x_5) = 0;$	
		$f_4(x_5, x_6) = 0; f_5(x_1, x_2) = 0; f_6(x_3, x_4, x_6) = 0$	
		Determine Associated incidence matrix, digraph of the process and	
		associated adjacency matrix	
		OR	
Q.4	(a)	Write briefly about Path tracing method (PTM).	07
	(b)	Compare various tearing algorithms in tabular form	07
Q.5	(a)	Describe Barkley and Motard algorithm in detail.	07
	(b)	Write a brief note of Professional simulation package õChemcadö.	07
		OR	
Q.5	(a)	Discuss modularity and routing for prediction of VLE data	07
	(b)	With neat flow chart discuss Kehat and Shacham algorithm	07
