Seat No.: _			
		GUJARAT TECHNOLOGICAL UNIVERSITY	
C 1		M. E SEMESTER – II • EXAMINATION – SUMMER • 2014	
U		code: 1722905 Date: 20-06-2014	
		Name: Optimization Techniques	
	ne: v. tructio		
11150		Attempt all questions.	
		Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
Q.1	(a)	Discuss scope of optimization? Give detailed classification of optimization	07
	(b)	problems. For each of the following functions :(i) $f(x) = 3 x^2$ (ii) $f(x) = -5x^2$ (iii) $f(x) = -5x^2$	07
	(~)	$2 x^2 \circ x^3$. Determine if f(x) is convex, concave, strictly convex, strictly concave, all or none of these classes in the range $-\hat{O} \ddot{O}x \times \hat{O}$.	0.
Q.2	(a)	Build a simplex table and describe its components.	07
	(b)	State necessary and sufficient conditions for stationary points.	07
		Sketch $y = x^2 - 4x$ and find stationary points. OR	
	(b)	Bracket the minimum function $f(x) = x^2 + 54/x$ in the interval (0,5)	07
Q.3	(a)	Solve the NLPP Max $z = 4 x_1 - x_1^2 + 8 x_2 - x_2^2$	07
		subject to $x_1 + x_2 = 2$ $x_1, x_2 \times 0$.	
	(b)	Discuss three different types of optimality criteria.	07
		OR	
Q.3	(a)	Differentiate the simplex solution procedure for a maximization and minimization problem of LPP.	07
	(b)	State advantages of duality. Obtain dual of following LPP; Min $Z = x_1 - 3x_2 - 2x_3$	07
	()	Subject to the constraints,	
		$3x_1 - x_2 + 2x_3 \ddot{O}7$	
		$2x_1 - 4x_2 \times 12 \\ -4x_1 + 3x_2 + 8x_3 = 10$	
Q.4	(a)	Use Lagrange multipliers to optimize Min Z = $4x_1^2 + 5x_2^2$	07
~··	(4)	Subject to the constraints, $2x_1 + 3x_2 - 6 = 0$.	07
	(b)	Discuss Box methodøs algorithm to obtain optimal solution. OR	07
Q.4	(a)	Why stochastic programming is required? Explain stochastic programming	07
	(b)	with a suitable example. õPenalty method transforms a constrained problem into a sequence of	07
	(0)	unconstrained problemö. Justify the statement.	07
Q.5	(a)	Why are engineers interested in optimization? State procedure for solving	07
	(b)	optimization problems. Discuss Quadratic Programming for NLP	07
	(b)	Discuss Quadratic Programming for NLP. OR	07
Q.5	(a)	State steps for GRG algorithms for unconstrained situation.	07
	(b)	Discuss a case study in dynamic programming.	07
