Seat No.: _

Enrolment No.

Sea	l No.:	Enforment No.	
		GUJARAT TECHNOLOGICAL UNIVERSITY	
		M. E SEMESTER – II • EXAMINATION – SUMMER • 2014	
Sul	biect	code: 1724201 Date: 16-06-2014	
	•	Name: Power Efficient VLSI Design	
	-	2:30 pm - 05:00 pm Total Marks: 70	
	tructio		
1115		Attempt all questions.	
		Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
		8 8	
Q.1	(a)	Explain Tolerable Skew v/s Zero Skew.	07
	(b)	A 32 bit off-chip bus operating at 5V and 66MHz clock rate is driving	07
		capacitance of 25pF/bit. Each bit is estimated to have a toggling probability of	
		0.25 at each cycle. What is power dissipation in operating the bus?	
Q.2	(a)	Explain the need of power efficient VLSI Design. Discuss in detail Static	07
		Power Dissipation and Dynamic Power Dissipation in detail.	
	(b)	Explain with example Power and Performance Management.	07
	<i></i> .	OR	
	(b)	Explain Multi -V _T Technique.	07
Q.3	(a)	Discuss SRB Techniques for static power reduction.	07
	(b)	Explain in detail different clock distribution network.	07
		OR	
Q.3	(a)	Discuss in detail Parallel and Pipelining architecture methodology used for low	07
		power design.	~-
	(b)	Discuss various sources of power dissipation in DRAM and SRAM.	07
Q.4	(a)	What is the significance of Switching Activity Reduction? Explain various	07
		technique used for the same in order to reduce power dissipation.	
	(b)	The Chip size of a CPU is 15 mm x 25mm with clock frequency of 300MHz	07
		operating at 3.3V. The length of the clock routing is estimated to be twice the	
		circumference of the chip. Assume that the clock signal is routed on a metal	
		layer with width of 1.2 μ m and the parasitic capacitance of the metal layer is	
		$1 \text{ fF}/\mu\text{m}^2$. What is the power dissipation of the clock signal?	
04	(a)	OR Explain Twin Tub Process? Why high concentration of n well is required?	07
Q.4	(a) (b)	Explain Twin Tub Process? Why high concentration of n-well is required? Discuss the significance of N-well process compared to P-Well CMOS	07
	(0)	Process.	07
			~ -
Q.5	(a)	Compare Single Driver v/s Distributed Buffer scheme.	07
	(b)	Compare SPICE simulation v/s Statistical based power estimation techniques.	07
05	(a)	OR Derive mathematical expression to avoid negative tolerable skew and positive	07
Q.5	(a)	tolerable skew.	U/
	(b)	Discuss Monte Carlo Simulation Technique for power estimation with	07
		necessary expressions.	07
