Seat N	lo.:	Enrolment No		
		GUJARAT TECHNOLOGICAL UNIVERSITY		
	M. E SEMESTER – I • EXAMINATION – SUMMER • 2014			
Subject code: 1725006 Date: 23-06-201				
Subje	ect Na	nme: Tribology of Machine Elements		
Time	Time: 02:30 pm - 05:00 pm Total Marks: 70			
Instructions:				
		ttempt all questions.		
		lake suitable assumptions wherever necessary. igures to the right indicate full marks.		
	3. Г	igures to the right indicate full marks.		
Q.1	(a)	Define the term 'Tribology'. Discuss the application of it in day to day life.	07	
Q.1	(b)	Explain the various Tribological solutions for overcoming friction and wear.	07	
	` '			
Q.2	(a)	Enlist the different methods of studying the surface. Describe with neat sketch	07	
	(b)	profilometer. Briefly explain the selection parameter for bearing design.	07	
	(b)	OR	07	
	(b)	Explain the term wear. Explain in detail different types of wear experienced in	07	
	(~)	mechanical systems.		
0.2	(0)	Explain the principle of elasto-hydrodynamic lubrication.	07	
Q.3	(a) (b)	Derive the question of load carrying capacity of hydrostatic step bearing.	07	
	(0)	OR		
Q.3	(a)	Give the detail comparison of hydrodynamic bearing with hydrostatic bearing.	07	
4.4	(b)	Derive the question of pressure distribution in case of infinity short	07	
		hydrodynamic journal bearing. Also state the assumption made.		
Q.4	(a)	Derive the Reynold's question in two dimensional using direct method fpr	07	
		hydrodynamic lubrication.		
	(b)	The following data is given for a hydrostatic thrust bearing:	07	
		Thrust load=500 kN, Shaft speed=720 rpm,		
		shaft diameter=500 mm, recess diameter=300 mm,		
		film thickness=0.15 mm, viscosity of lubricant=160 SUS,		
		specific gravity=0.86 Calculate (i) supply pressure (ii) flow requirement in liters/min		
		(iii) Power loss in pumping (iv) frictional power loss.		
		OR		
Q.4	(a)	Explain the CLA method and RMS method used to analyze surface traces.	07	
	(b)	Define viscosity and discuss effect of pressure and temperature on viscosity of	07	
		lubrication oil.		
Q.5	(a)	State the desirable properties of lubricants. Also explain briefly the process of	07	
2.0	()	recycling of used oil.		
	(b)	Derive the Petrioff's equation for hydrodynamic journal bearing.	07	
		OR	07	
Q.5	(a)	State laws of friction. Explain how Coulomb's vision of friction explains these	07	
	/ 1. \	laws of friction.	07	
	(b)		07	
		(i) SUS (ii) Viscosity Index		
		(iii) Fluidity		
