Sea	t No.:	Enrolment No	
Sul Tir	bject ne: (tructi 1. 2.	GUJARAT TECHNOLOGICAL UNIVERSITY M. E SEMESTER – I • EXAMINATION – SUMMER • 2014 t code: 710301 Date: 13-06-2014 t Name: Control Engineering 02:30 pm - 05:00 pm Total Marks: 70 tons: . Attempt all questions. . Make suitable assumptions wherever necessary. . Figures to the right indicate full mark.	
Q.1	(a) (b)	How pole placement is decided in state feedback? State and prove Lyapunovøs stability theorem.	07 07
Q.2	(a) (b)	(i) $3^{4} + 10^{3} + 5^{2} + 5 + 2 = 0$ (ii) $6^{6} + 5^{5} + 3^{4} + 3^{3} + 2^{2} + 3 + 1 = 0$	07 07
	(b)	OR Find the curve with minimum arc length between the point $x(0)=0$ and the curve, $(t) = t2 6 10t + 24.$	07
Q.3	(a)	$A = \begin{bmatrix} 1 & 0 & \dot{x} = Ax + Bu \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \qquad For the system, design a linear state variable feedback such that the closed loop poles are located at -1, -2 and -3. Consider A and B as follows.$	07
	(b)	Write a short note on Full Order Observers. OR	07
Q.3	(a)		07
	(b)	Write a short note on Optimal estimation for linear continuous time system.	07
Q.4	(a) (b)	What is Dynamic programming? State and explain principle of causality and principle of invariant imbedding for optimal control system. Define equilibrium point and discuss about stability at equilibrium point for linear time varying system	07 07
Q.4	(a) (b)	OR Derive the equations of Optimal control law, feedback gain algorithm and Optimal performance index for Discrete time Linear State Regulator problem. Derive the equations for deadbeat control by state feedback.	07 07
Q.5	(a) (b)	Why eigenvalues of matrix A have negative real parts to make linear system stable? Give your answer with necessary reasons. Explain steepest descent method for optimal control problem.	07 07
Q.5	(a) (b)	OR Explain stochastic optimal linear regulator system in detail. Give the formulation of variational calculus using Hamiltonian method.	07 07