Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – SUMMER • 2014

M. E SEMESTER – I • EXAMINATION – SUMMER • 2014			
Subject code: 710401NDate: 13-06-2			
Subject Name: Statistical Signal Analysis			
Time: 02:30 pm - 05:00 pm Total Marks: 70			
Instructions:			
		Attempt all questions. Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
Q.1	(a)	Define CDF. State and prove its properties.	07
Q.1	(a) (b)	(i). Explain Total probability and Bayeøs theorem	04
	()	(ii). The probability of a bit error in communication line is 10^{-3} . Find the	
		probability that a block of 1000 bits has five or more errors.	03
Q.2	(a)	A company producing electric relays has three manufacturing plants A, B and C producing 50, 30, and 20 percent, respectively, of its product. Suppose that the probabilities that a relay manufactured by these plants is defective are 0.02, 0.05, and 0.01, respectively.(i). If a relay is selected at random from the output of the company, what is the probability that it is defective?	
		(ii). If a relay selected at random is found to be defective, what is the probability that it was manufactured by plant B?	07
	(b)	(i). Let $Y = a \cos(t + \cdot)$ where a, and t are constants and is a uniform random variable in the interval (0,2). The random variable Y results from sampling the amplitude of a sinusoid with random phase . Find the expected	0.4
		values of Y and expected value of power of Y. (ii). Find the variance of the random variable X that is uniformly distributed in the interval [a, b].	04 03
		OR	
	(b)	Give answer of following questions.	0.4
		(i). Discuss statistical independence and uncorrelation of random variables.(ii). Give the expression for the PDF of a Gaussian random variable and show	04
		that Gaussian PDF integrates to one.	03
Q.3	(a)	State and explain Markov and Chebysheves inequalities.	07
	(b)	Find the normalization constant c and the marginal PDF¢s for the following joint PDF :	
		$f_{X,Y}(x,y) = ce^{-x}e^{-y}$, 0 Ö y Ö x ÖÔ = 0 , elsewhere	
		Also, Find P[$X + Y \ddot{O}1$].	07
		OR	
Q.3	(a)	State and prove Central limit theorem.	07
	(b)	Let the random variable Y be defined by $Y = aX + b$, Where a is a nonzero constant. Suppose that X has CDF $F_X(x)$, then find $F_Y(y)$ and $f_Y(y)$.	07
Q.4	(a)	For random process define cross correlation function and cross power spectral density. Give useful property of cross power spectral density.	07

(b) The joint CDF for the vector of random variables X = (X, Y) is given by $F_{X,Y}(x,y) = (1 \circ e^{\circ x}) (1 - e^{-y})$, $x \times 0, y \times 0$ = 0, elsewhere Find the marginal CDFøs. Find the probability of events $A = \{ X \ddot{O}1, Y \ddot{O}1 \}, B = \{X > x, Y > y\}.$

- Q.4 (a) What is convergence of Random variable? Explain sure convergence, Almost sure convergence.
 - (b) A random telegraph signal is passed through a RC low pass filter which has a Transfer function

$$H(f) = \frac{\beta}{\beta + j2\pi f}$$

Where = 1/RC is the time constant of the filter. The Auto correlation function of the Telegraph signal is $R_X() = 1 - e^{-2||}$. Find the power spectral density and the autocorrelation of the output.

Q.5 (i). Define characteristics function and Moment generating function of random (a) variable. 03 (ii). For a random process X(t), give the definitions of Mean, Autocorrelation Auto covariance and Correlation coefficient. 04 (b) Consider a random amplitude sinusoid signal with period T, $X(t) = A \cos(2 t/T)$ Is X(t) cyclostationary ? Wide sense cyclostationary ? 07 OR Q.5 Give the answer of following questions. **(a)** (i). Are the wiener and Poisson processes mean square continuous? 03 (ii). Does the Wiener process whose autocorrelation function is given by $\min(t_1, t_2)$ have a mean square derivative? What is the name of the $R_{x}(t_{1},t_{2}) =$ process obtained by taking derivative of Wiener process? 04 (b) Explain Mean square convergence and convergence in probability with an example. 07

07

07

07