Instructions:

Q.1

Q.2

Q.3

Q.3

Q.4

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – SUMMER • 2014

Subject code: 710412N

Date: 30-06-2014

07

07

07

07

07

07

07

07

07

07

Subject Name: Digital VLSI Design Time: 02:30 pm - 05:00 pm

Total Marks: 70

- 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. Explain VLSI design flow with necessary diagrams and explain the concepts of **(a)** regularity, modularity and locality with suitable example. Consider a MOS system with the following parameters: **(b)** tox =200A°, GC = -0.85 V, $NA = 2*10^{15}$ cm⁻³, $Qox = q*2*10^{11}$ C/cm² 1) Determine the threshold voltage V under zero bias at room temperature $(T = 300 \text{ }^{\circ}\text{K})$. Note that $ox=3.97 \text{ }_{0}$ and $si=11.7 \text{ }_{0}$. 2) Determine the type (p-type or n-type) and amount of implant required to change the threshold voltage t0 0.8v. Draw energy band diagram of the combined MOS system. Explain MOS **(a)** system under different external bias voltage with energy band diagram. Write detail note on layout design rules for MOSFET **(b)** OR Discuss Short channel effect in MOSFET with diagram. **(b)** Find out the equation of critical voltages for Noise Margin for the resistive-**(a)** load n-channel MOSFET inverter circuit Calculate critical voltages V_{OL}, V_{OH}, V_{IL}, V_{IH} of a depletion-load NMOS **(b)** inverter: VT0 = 1V (enhancement-type), VT0 = -3 V(depletion-type), = 0.4 V^{1/2}, F=-0.3V,VDD=5V,(W/L)driver=2,(W/L)load=1/3. Kn,driverø=kn,loadø= $25\mu A/V^2$ OR Derive the expression of a threshold voltage for n-channel MOSFET. **(a)** Design a resistive-load inverter with R = 1 k, such that $V_{OL} = 0.6 \text{ V}$. **(b)** The enhancement-type nMOS driver transistor has the following parameters: $V_{DD} = 5.0 \text{ V}, \text{ Vto} = 1. \text{ V}, \gamma = 0.2 \text{ V}^{1/2}, \text{ lambda} = 0, \mu_{\text{n}} c_{\text{ox}} = 22 \mu \text{ A}/\text{V}^2$ (a) Determine the required aspect ratio, W/L. (b) Determine VIL and VIH. (c) Determine the noise margins. Calculate the delay time for CMOS inverter during its low to High transition. **(a)**
- (b) μ nCox= 120 μ A/V2, μ pCox= 30 μ A/V2,L=0.6 μ m for both NMOS and PMOS 07 devices V_{T0,n}=0.8 V, V_{T0,p}=-1.0 V, Wmin = 1.2 μ m.

Design a CMOS inverter by determining thr channel widths Wn and Wp of the NMOS and pmos transistors to meet the following performance specification.

- > Vth =1.5V for VDD=3V.
- ▶ Propogation delay times _{PHL} Ö 0.2 ns and _{PLH} Ö 0.15 ns.
- A falling delay of 0.35 ns for an output transition from 2V to 0.5V assuming a combined output load capacitance of 300fF and ideal step input.

Q.4	(a)	Write short note on CMOS NOR2 Gate. Explain its usefulness	07
	(b)	Draw the circuit diagram of CMOS implementation of D-latch along with the simplified view. Also explain the timing diagram of it.	07
Q.5	(a)	Discuss cascading problem in dynamic CMOS logic circuit with appropriate diagram.	07
	(b)	Explain SR Latch circuit using CMOS NAND2 gates.	07
		OR	
Q.5	(a)	Answer the following questions	
		(1) Realized following Boolean equation using CMOS transmission gates $F=AB+A\phi C\phi + AB\phi C$.	03
		(2)Draw Six-transistor CMOS transmission gate implementation of the XOR function.	02
		(3)Draw two input Multiplexer circuit implementation using CMOS transmission gate.	02
	(b)	Explain NORA CMOS logic circuits with example.	07
