GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER - I • EXAMINATION - SUMMER • 2014

Subject code: 710903N **Subject Name: Engineering Optimization** Time: 02:30 pm - 05:00 pm

Date: 19-06-2014

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) In submarine telegraph cable the speed of signaling varies as $x^2 \log(\frac{1}{x})$, where x is 05 the ratio of the radius of the core to that of the covering. Show that the greatest speed is attained when this ratio is $1:\sqrt{e}$.
 - (b) Analyze the function $f(x) = 12x^5 45x^4 + 40x^3 + 5$ and classify the stationary points 05 as maxima, minima and point of inflection.
 - (c) What is optimization? State five engineering applications of optimization 04

(a) State the Kuhn-Tucker conditions. 0.2 Minimize $f(x_1, x_2) = (x_1 - 2)^2 + (x_2 - 1)^2$, subject to the constraint, $2 \ge x_1 + x_2$ $x_2 \ge x_1^2$

> Check which of the vectors $X^* = [1.5, 0.5]^T$, $X^* = [1,1]$ satisfies the Kuhn Tucker conditions.

(b) Solve using the cutting plane the integer programming problem 07 $Z = 7x_1 + 10x_2$ $s.t. - x_1 + 3x_2 \le 6$

 $7x_1 + x_2 \le 35$, $x \ge 0$ And integer.

OR

- (b) Find the minimum of the function $f(x) = 0.5 x \exp(-x^2)$ by the Newtongs method 07 with the starting value of $x_0 = 1.0$. Carry out five iterations.
- Q.3 (a) What is the Lagrange multiplier method? What is the significance of Lagrange 07 multipliers? Find the dimension of a rectangular box of maximum capacity when the surface area is 216 m^2 , Using the method of Lagrange multipliers.
 - 07 (b) How do you test the positive, negative, or indefiniteness of a square [A]?

Determine Whether matrix is positive definite, negative definite or indefinite by finding its Eigen values:

1 -1 1 3 -1 07

- Discuss the method of bracketing the minimum of a unimodal function in an interval. Q.3 **(a)** 07 07 **(b)** Minimize $f(X) = 2x_1^{-1}x_2^{-1} + \frac{3}{2}x_2^{-2} + 2x_1x_2^2$ by geometric programming technique.
- Q.4 What is the difference between Fibonacci and golden section methods? Describe 07 **(a)** the method of Fibonacci stepwise.
 - (b) Define a saddle point and indicate its significance. Find the condition that the 07 quadratic $ax^2 + 2hxy + by^2 + 2fx + 2gy + c$ may be concave or convex.

OR

- (a) Minimize the function $f(x) = 5x^2 + 2x 1$, using quadratic interpolation method. **Q.4** 07
- **(b)** Minimize $f(x_1, x_2) = (x + 2/20)^2$ Q.4 subject to , $\frac{1-x}{2} \le 0, \frac{x-2}{2} \le 0$ Using interior penalty function method.
- (a) Minimize $f(x) = \sin(x) x^2$ with [0,1] as starting search range, . Using Golden 07 Q.5 Section Method.(Show five iterations)
 - (b) Find the minimum of the function $f(x_2, x_2) = 4x_1^2 + 3x_2^2 5x_1x_2 8x_1$ with starting point 07 $X = [0,0]^T$ Using conjugate gradient method.

OR

- (a) Minimize $f(x_1, x_2) = x_1 x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ starting from the point $X = [0, 0]^T$, Q.5 07 using Steepest descent (Cauchyøs) method. (Show three iterations) 07
 - (b) Name and describe the main features of Genetic Algorithms (GA).

07