Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – SUMMER • 2014

Subj	ect co	de: 710905N	Date: 24-06-2014	
Subj	ect Na	ame: Tribology		
Time	e: 02:3	30 pm - 05:00 pm	Total Marks: 70	
Insti	ructio	ons:		
	2. M	ttempt all questions. Take suitable assumptions wherever neces igures to the right indicate full marks.	ssary.	
Q.1	(a) (b)	Derive from basic principles 2-D Reyn Differentiate Good surface and Bad su		10 04
Q.2	(a) (b)	How one can measure the amount of fi State assumption made, Prove Archad	Friction between two surfaces in contact?	07 07
		Q= k	\times (W \div 3P ₀)	
		where P ₀ yield pressure And comment about magnitude of fac	tor ÷kø OR	
	(b)	Discuss factors affecting the wear rate	between the rubbing surfaces	07
Q.3	(a) (b)	Explain õTribology is an interdisciplina Define the following terms: 1. Tribo surfaces	5. Seat of pressure	07 07
		 Tribo system Tribology Antifriction Bearing 	6. Converging Fluid Film7. Diverging Fluid Film	
Q.3	(a)	Explain working principle of Optical F	OR Profilometer with neat sketch	07
Q.S	(b)	Define the following terms:	Tomometer with near sketch.	07
	()	1. Waviness	5. Contact area	
		2. Surface roughness	6. Real area of contact	
		3. Sampling length4. Bearing area curve	7. CLA & RMS	
Q.4	(a)	Explain squeeze- film lubrication. Give practical situation where hydrobserved.	drostatic squeeze- film lubrication can be	07
	(b)		important properties of the lubricants. OR	07
Q.4	(a)	Explain the EHD (Elasto hydrodynam examples.	nic lubrication) in detail and state its Practical	07
	(b)	*	e at certain extreme environmental conditions uum and along with their solution.	07
Q.5	(a)	Discuss different regimes of lubricatio	n with the help of Stribeckos curve	07

	(b)	The following data refers to hydrostatic thrust bearing:	
	` '	Total thrust load = 500 kN, shaft diameter = 500 mm	
		Viscosity of the lubricant = 29.3 cP, recess diameter = 300 mm	
		Shaft speed =720 r.p.m., film thickness = 0.15 mm	
		Calculate:	
		1. Supply pressure	
		2. Flow requirement in litre/min	
		3. Power loss in pumping	
		4. Power loss in friction	
		OR	
Q.5 ((a)	The following data refers to short-journal bearing:	07
		Journal diameter = 50 mm	
		Length of bearing = 25 mm	
		Viscosity of lubricating oil = 50 MPa- s	
		Speed of journal = 1440 r.p.m.	
		Eccentricity ratio = 0.5	
		(r_i/C) ratio = 1000	
		Calculate:	
		1. Load carrying capacity	
		2. Attitude	
		3. Power lost in Friction	
	(b)	Explain the following term with reference to hydrodynamic journal bearings:	07
	` ′	1. Design variable 2. Performance variable 3. Sommerfeld number	
