Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER - I • EXAMINATION - SUMMER • 2014

Date: 13-06-2014 Subject code: 711601N **Subject Name: Advanced Thermodynamics** Time: 02:30 pm - 05:00 pm **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full mark. Q-(1)(a)Show that the yield of methanol at $t = 390 \text{ }^{\circ}\text{C}$, p = 300 atm is 07 21% for the reaction proceeds as follows:- $CO + 2H_2 \rightarrow CH_3OH.$ Data: Free Energy change under std.condition at T=663.2 K is + 14700 cal/gmol and value of $K_{\gamma} = 0.434$ (b) Write briefly about criteria of chemical reaction equilibria and 07 standard conditions. Hence or otherwise, discuss about ranges of the following:- ΔG : Free Energy Change for reaction under actual conditions. ΔG^{o} : Free Energy Change for reaction under standard conditions.

- Κ : Equilibrium constant for chemical reaction equilibria.
- X_e : Equilibrium constant for reaction under actual conditions.
- Q-2(a) Starting from first principals, derive an expression for Heat of Reaction for 07a reaction of type $a \cdot A + b \cdot B \leftrightarrows c \cdot C + d \cdot D$ occurring at any temperature (T) and any pressure (p) under non-ideal conditions.
 - Elaborate the procedure for obtaining equilibrium conversion 07 (b) charts.Depict and discuss generalised nature of these charts for a reaction of type A == B + C being highly reversible and exothermic in nature occuring under different sets of conditions.

OR

- (b) Elaborate the procedure for obtaining equilibrium conversion 07 charts.Depict and discuss generalised nature of these charts for a reaction of type A == B + C being highly reversible and endothermic in nature occuring under different sets of conditions.
- 07 Explain calculations of equilibrium conversion values under isothermal Q-3(a) conditions for the following two reactions proceeding simultaneously: $A \rightarrow B+C \& A \rightarrow D+E$. Derive relevant equations for equilibrium constant (K) as a function of P, $n_t \& x_e$. Also briefly decribe stepwise procedure for calculation of values of xe when both reactions proceed simultaneously.
 - (b) Explain the adiabatic flash calculations with block diagram and supporting 07 equations.

	OK OK		
Q-3(a)	With reference to a generalized reaction of type.		
	aA + bB = cC + dD		
	evaluate equilibrium constant for chemical reaction equilibria from basic		
	thermodynamics data, ΔH_{f}^{\bullet} , ΔG_{f}^{\bullet} and Cp equations for reactants and		
	products. Derive the necessary equation from first principles.		
(\mathbf{h})	Evaluin the DIDI T coloulations with block discremend supporting	07	

ΛD

- (b) Explain the BUBL T calculations with block diagram and supporting 07equations.
- Q-4(a) A feed to a column has the composition given in the table below, and is a 07 pressure of 14 bar and a temperature 60°C. Based on calculations verify that the given mixture is a Vapour-liquid mixture at given conditions.

Feed	kmol/h	Ki
ethane	20	3.8
propane	20	1.3
isobutene	20	0.43
n-pentane	<u>20</u>	0.16
Total:	80	

Also determined the flow rates and composition of vapour and liquid phases.

(b) Explain the DEW T Calculations with block diagram and supporting 07 equations

OR

Q-4(a) For the ammonia synthesis reaction

> $0.5 N_2 + 1.5 H_2$ NH₃ With 0.5 mol N₂ and 1.5 mol H₂ as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas. Show that

 $\epsilon_{e} = 1 - (1 + 1.299 \text{ K}(\text{P}/\text{P}^{0}))^{-0.5}$

where
$$\epsilon_{e}$$
 = Equilibrium extent of reaction

P = Absolute pressure

- P^0 = Standard state pressure
- K = Equilibrium constant
- Explain the DEW P Calculations with block diagram and supporting 07 (b) equations
- Explain with neat sketch the working of Lithium Bromide water Vapour Q-5(a) absorption refrigeration cycle.
 - Explain with neat sketch the working of modified Vapour Compression 07 (b) refrigeration cycle.

OR

- Q-5 For 2000 kW (568.7TR) Lithium bromide water absorption refrigeration 14 plants following data are given.
 - Chilled water entering temperature = 12° C i)
 - Chilled water leaving temperature = 9° C ii)
 - Cooling water supply temperature = 32° C iii)
 - iv) Cooling water leaving temperature = 40° C

7

07

- v) Saturated steam pressure in generator = 83 kPa g
- vi) Operating pressure in evaporator and absorber = 7 mmHg a
- vii) Boiling temperature of pure water at 7 mmHg a pressure = 6° C
- viii) Latent heat of vaporization of water at 6° C = 2490 kJ/kg
- ix) Heat of dilution of Li-Br solution = 470 kJ/kg of water (Heat evolved)
- x) Strength of Li-Br solution at inlet to absorber = 63.3% (by mass)
- xi) Strength of Li-Br solution at outlet from absorber = 59.5% (by mass)
- xii) Entering temperature of Li-Br solution to absorber = 48.9° C
- xiii) Outlet temperature of Li-Br solution from absorber = 40° C
- xiv) Average specific heat of Li-Br solution in the range of 59.5% to 63.3% (by mass) = 1.842 kJ/(kg. K).
- xv) Inlet temperature of weak solution of Li-Br (59.5%) to generator = 75° C
- xvi) Boiling point of weak solution in generator = 88.9° C.
- xvii) Condensation temperature of water vapour in condenser = 46.1° C.
- xviii) Latent heat of vaporization of water at 46.1° C = 2393 kJ/kg.
- xix) Boiling point of strong solution (63.3%) leaving the generator = 101.6° C
- xx) Specific heat of water vapour = 1.884 kJ/kg.
- xxi) Saturated steam supplied to generator at 82.7 kPa g.Its latent heat of condensation = 2210 kJ/kg.

Calculate:

- a) Chilled water flow rate
- b) Evaporation rate of water in chiller
- c) Flow rates of strong solution and weak solution of Li-Br
- d) Heat duty of absorber
- e) Heat duty of generator
- f) COP of refrigeration cycle
- g) Heat duty of condenser