Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – SUMMER • 2014

Sul Tin	oject ne: 02	code: 712103NDate: 19-06-2014Name: Fluid Mechanics and Gas Dynamics2:30 pm - 05:00 pmTotal Marks: 70tions:	
1113		Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Explain the theory of propagation of infinitesimal pressure wave in a medium and derive sonic velocity is equal to $(\partial p/\partial \rho)_s$.	0′
	(b)	What is an aerofoil? Define with a sketch the various terms used in aerofoil geometry.	0′
Q.2	(a)	Explain velocity potential and stream function for two dimensional incompressible potential flow and hence prove Cauchy - Riemannøs equation in	0′
	(b)	Cartesian coordinates. Explain Source flow, Sink flow and Doublet with figures. OR	0′
	(b)	Derive the following from one dimensional steady flow energy equation $a^2/(-1) + (c^2/2) = (c^2_{max}/2) = a^2_0/(-1) = h_0$	0′
Q.3	(a)	Explain flow in constant area duct with heat transfer on (h-s) diagram and explain the different Mach number regions for heating and cooling of gas flow in duct.	0
	(b)	 A combustion chamber in a gas turbine plants receives air at 350 K, 0.55 bar and 75 m/s. The air-fuel ratio is 29 and the CV of fuel is 41870 KJ/kg. take = 1.4 and R = 0.287 KJ/kg K for the gas determine: (i) The initial and final Mach Numbers. (ii) Percentage stagnation pressure loss in the combustion chamber. 	0'
Q.3	(a)	OR Explain flow in constant area duct with friction on enthalpy-entropy diagram	0
	(b)	 Also represent graphically the variation of stagnation pressure. A circular duct passes 8.25 kg/s of air at an exit Mach number of 0.5. The entry pressure and temperature are 3.45 bar and 38° C respectively and the coefficient of friction 0.005. if the Mach number at the entry is 0.15, determine (i) Length of the duct. (ii) Pressure and temperature at the exit. (iii) Stagnation pressure loss. 	0′
Q.4	(a)	Explain the importance of continuity equation. Also derive the continuity equations in Cartesian coordinates system.	0′
	(b)	Derive Eulerøs Momentum equation in Cartesian coordinate system. OR	0
Q.4	(a)	Write down the Navier-Stocks equations of motion for three-dimensional, unsteady, compressible and viscous flow, also explain the body and pressure forces.	0
	(b)	Derive Eulerøs equation and Bernoulliøs equation for one dimensional incompressible flow.	0'
Q.5	(a)	Derive Rankine-Hugoniot equation for a normal shock wave.	0

1

(b)	What is similitude and model testing? Explain geometric, kinematic and	07
	dynamic similarity.	
	OR	

Q.5	(a)	Define following dimensionless numbers and state their significance for fluid	07	
		flow problems: Reynoldøs number, Froude number and Mach number		

(b) Explain the different types of hydraulic similarities that exist between a prototype and its model.
