Enrolment No._____

-GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – SUMMER • 2014

M. E SEMESTER – I • EXAMINATION – SUMMER • 2014						
•		714101N Date: 13-06-2014 e: Mathematical Methods in Signal Processing				
Subject Name: Mathematical Methods in Signal Processing Time: 02:30 pm - 05:00 pm Total Marks: 70						
Instructions:						
		npt all questions.				
2. 3.		e suitable assumptions wherever necessary. res to the right indicate full marks.				
0.	i igui	es to the right indicate full marks.				
Que 1)	a)	Compute transpose, inverse and rank of the matrixA,	[7]			
		$\mathbf{A} = \begin{bmatrix} 3 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$				
		$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix}$				
		$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$				
	b)	Show that if A and B are open sets: i) $A \cup B$ is open ii) $A \cap B$ is open.	[7]			
Que 2)	a)	Obtain Z transform of $x(n) = (n)$ and $x(n) = a^n u(n)$ using basic definitions of Z transform.	[7]			
	b)	Explain Maximum Likely Hood Principle with suitable example.	[7]			
	,	OR				
	b)	i) Let $f: X \to R$ be an arbitrary function defined on a set X. Show that	[4]			
		d(x, y) = f(x) - f(y) is a Pseudometric.				
		ii) Show that for an induced norm $\ .\ $ over a real vector space				
		the parallelogram law is true.	[3]			
		$ x + y ^{2} + x - y ^{2} = 2 x ^{2} + 2 y ^{2}.$				
Que 3)	a)	Obtain Fourier Transform of of $x(t) = (t)$ and $x(t) = (t-)$.	[7]			
	b)	Explain Bayes principle and show how to devise Bayes test for binary	[7]			
		channel. OR				
Que 3)	a)	i) Let x_t, y_t and v_t be discrete-time random processes with	[7]			
		$y_t = x_t + v_t$				
		$b(z^2)$				
		And $S_{y}(z) = 1$ $S_{x}(z) = \frac{b(z^{2})}{a(z^{2})}$				
		Where $b(z^2)$ and $a(z^2)$ are polynomials in z^2 with the degree of				
		$b(z^2)$ strictly lower than the degree of $a(z^2)$. Furthermore, assume $R_{xy}(t) = 0$.				
		Show that $H(z) = 1 - \frac{1}{S_v^+(z)}$ holds				
		Show that $H(2) = I = S_y^+(z)$ holds				
	b)	Consider a zero-mean random vector $X = \{x_1, x_2, x_3\}$ with covariance	[7]			
	,					
		$cov(X) = E[XX^T] = \begin{bmatrix} 7 & 4 & 2 \\ 7 & 4 & 2 \end{bmatrix}$				
		$\operatorname{cov}(X) = E[XX^T] = \begin{bmatrix} 1 & .7 & .5 \\ .7 & 4 & .2 \\ .5 & .2 & 3 \end{bmatrix}$				
		determine the optimal coefficients of the predictor of x_1 in terms of				
		x_2 and x_3 . $\ddot{x}_1 = c_2 x_2 + c_3 x_3$				
Oue 4)	a)	x_2 und x_3 . $x_1 - c_2 x_2 + c_3 x_3$ Explain contraction mapping theorem with its proof.	[7]			

Que 4) a) Explain contraction mapping theorem with its proof.

[7]

	b)	Explain LMS algorithm with application. OR	[7]
Que 4)	a)	Let $\ .\ $ is a norm satisfying the submultiplicative property and $A: x \to x$ is	[7]
		an operator with. $ A < 1$. Then $(I - A)^{-1}$ exists, and $(I - A)^{-1} = \sum_{i=0}^{\infty} A^{i}$.	
	b)	i) Show that $(A^*)^{-1} = (A^{-1})^*$. ii) Show that if A has both a left inverse and a right inverse, they must be same.	[4]
Que 5)	a)	Discuss one method for phase estimation with block diagram.	[3]
2000)	,		[7]
	b)	Let $A: H \to H$ be a bounded linear operator on a Hilbertspace H. Show that: i) The adjoint operator A^* is linear. ii) The adjoint operator A^* is bounded iii) $ A = A^* $.	[7]
		OR	
Que 5)	a)	ii) Let $A = \begin{bmatrix} 2 & 4 \\ 1 & 5 \end{bmatrix}$, using cayley Hamilton calculate A^5 . i) Determine the Jordan form of A.	[7]
	b)	$A = \begin{bmatrix} 2 & 1 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}$	[4]
		$\begin{bmatrix} 0 & 0 & 2 \end{bmatrix}$ ii) The eigenvalues of a self adjoin matrix are real.	[3]
