GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – SUMMER • 2014

Subject code: 714704Date: 30-06-2014Subject Name: Optimization Theory and Practice			
Time	Time: 02:30 pm - 05:00 pm Total Marks: 70 Instructions:		
insti u	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full mark.	
Q:1	(a)	1. Find the extreme points of the function:	04
		 f(x₁, x₂) = x₁³ + x₂³ + x₁² + 2x₂² + 10 Show that the right circular cylinder of given surface (including the ends) and maximum volume is such that its height is equal to the diameter of the base 	04
	(b)	Find the dimensions of a rectangular box of volume $V = 1000 \text{ cm}^3$ for which the total length of the 12 edges is minimum using the Lagrangeøs method of multipliers.	06
Q:2	(a)	Explain the Kuhn-Tucker conditions (using suitable example) for maximization	07
	(b)	and minimization problem. Solve the following LPP graphically Minimize $Z = 3x_1 + 5x_2$	07
		Subject to $-3x_1 + 4x_2 \le 12$	
		$2\mathbf{x}_1 + 3\mathbf{x}_2 \ge 12$	
		$2\mathbf{x}_1 - \mathbf{x}_2 \ge -2$	
		$\begin{aligned} \mathbf{x}_1 &\leq 4; \\ \mathbf{x}_2 &\geq 2 \text{and} \qquad \mathbf{x}_1, \mathbf{x}_2 &\geq 0 \end{aligned}$	
		$x_2 = 2$ and $x_1, x_2 = 0$ OR	
	(b)	Solve the following LPP by simplex method Maximize $Z = 40x_1 + 35x_2$	07
		Subject to $2x_1 + 3x_2 \le 60$	
		$4\mathbf{x}_1 + 3\mathbf{x}_2 \le 96$	
		$\mathbf{x}_1, \mathbf{x}_2 \ge 0$	
Q:3	(a)	Minimize $f(x) = 0.65 [0.75/(1 + x^2)] = 0.65x \tan^{-1}(1/x)$ in the interval [0,3] by the Fibonacci method using $n = 6$.	07
	(b)	of 2m radius.	07
Q:3	(a) (b)	OR What are pattern directions? Draw the flow chart of Powelløs method. Explain the different steps of interior penalty method for nonlinear constrained optimization.	07 07
Q:4	(a)	Use Quasi Newton method to find minimum of	07

function $f(x) = \frac{x}{\log(x)}$, initial point = 1.5, step size = 0.1 and accuracy =

0.01.

(b) Find the minimum of following function in interval (0.0, 1.0) to within 10% 07 accuracy of the exact value. Use interval halving method. function f(x) = x(x - 1.8)

OR

Q:4	(a)	Perform five iteration of secant method to find minimum of	07
		function $f(x) = \frac{x}{\log(x)}$, step size = 0.1 and accuracy = .01.	
	(b)	Find the minimum of following function in interval (0.0, 1.0) to within 10%	07
		accuracy of the exact value. Use Dichotomous search method.	

function
$$f(x) = x^2 / \sin(x)$$

Q:5 (a) Write the algorithm of Univariarte method. 07

(b) Explain the classical optimization techniques with their specific applications. 07

OR

- Q:5 (a) Minimize $f(x_1, x_2) = 4x_1^2 + 3x_2^2 5x_1x_2 8x_1$ from the starting point 07 $X_1 = \begin{cases} 0 \\ 0 \end{cases}$. Perform four iterations of Hooke and Jeevesø method ($\Delta x_1 = \Delta x_2 = 0.8$, $\epsilon = 0.01$).
 - (b) Describe the application of LPP in engineering field. Explain the primal and dual 07 form of LPP with suitable example.
