GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER - III • EXAMINATION - SUMMER • 2014

M. E SEMESTER – III • EXAMINATION – SUMMER • 2014			
Su	bject	code: 730403 Date: 05-06-2014	
Subject Name: Optimization Techniques			
Time: 02:30 pm - 05:00 pm Total Marks: 70			
Instructions:			
1. Attempt all questions.			
		. Make suitable assumptions wherever necessary.	
	3	. Figures to the right indicate full marks.	
Q.1	(a)	Define optimization. Give some applications of optimization in engineering problems.	07
	(b)	(i) Find the maxima and minima, if any, of the function $f(x) = 4x^3 - 18x^2 + 27x - 7$. (ii) Find the minimum of the function, $f(x) = 10x^6 - 48x^5 + 15x^4 + 200x^3 - 120x^2 - 480x + 100$.	03 04
Q.2	(a) (b)	Maximize $f(x_1, x_2) = -x_1^2 + x_2^2 + 8x_1 + 10x_2$ subject to $3x_1 + 2x_2 \ddot{O} 6$, $x_1, x_2 \times 0$ using Kuhn ó Tucker conditions.	07 07
	(b)	OR	07
	(b)	Use the simplex method to solve the following LP Unbounded problem: Minimize $f = -3x_1-2x_2$ subject to x_1-x_2 Ö1 $3x_1$ ó $2x_2$ Ö6 where $x_1, x_2 \times 0$.	07
Q.3	(a)	Find the minimum of the function $f() = 0.65$ - $[(0.75)/(1+^2)] \circ 0.65$ tan ⁻¹ (1/) using quasi-newton method with starting point $_1 = 0.1$ and the step size $= 0.01$ in central differences formulad. Use $= 0.01$ for checking the convergence	07
	(b)	in central difference formulad. Use = 0.01 for checking the convergence. Minimize the function f (x) = $0.65 - [0.75/(1 + X^2)] - 0.65 \times \tan^{-1} (1/x)$ using the golden section method with n = 6.	07
0.2	(-)	\mathbf{OR}	07
Q.3	(a)	Find the minimum of $f = {}^{5}$ - 5 3 - 20 + 5 by the Qudratic interpolation method up to two iterations.	07
	(b)	Minimize the function $f(x) = 0.65 - [0.75/(1 + X^2)] - 0.65 x \tan^{-1} (1/x)$ in the interval [0,3] by the Fibonacci method using with $n = 6$.	07
Q.4	(a) (b)	State the iterative approach used in unconstained optimization. Minimize $f(x_1, x_2) = x_1 \circ x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ from the starting point	07 07
		$\mathbf{x}_1 = \begin{cases} 0 \\ 0 \end{cases}$ using Powelløs method.	
0.4		OR	07
Q.4	(a)	What are pattern directions? Describe the procedure to minimize a function by using Hooke and Jeevesømethod.	07
	(b)	Minimize f (x ₁ , x ₂) = x ₁ -x ₂ +2x ₁ ² +2x ₁ x ₂ +x ₂ ² by taking the starting point as X ₁ = $\begin{cases} 0 \\ 0 \end{cases}$,	07
		using Newtonøs method.	
Q.5	(a) (b)	Explain the approach of the exterior penalty function method with algorithm. Explain the sequential programming method with algorithm. OR	07 07
Q.5	(a)	Explain augmented Lagrange multiplier method for mixed Equality-Inequality	07

- (a) Explain augmented Lagrange multiplier method for mixed Equality-Inequality 07 Q.5
 - (h) Explain additioned Edgrange manipuer method for marce Equality mequality of constrained problems with the flowchart.
 (b) Minimize f (x) = 6x₁²+4x₁x₂+3x₂² subject to h(x) = x₁+x₂-5=0 using the augmented 07 lagrangian multiplier method.