GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – III • EXAMINATION – SUMMER • 2014

Subject code: 734703 Subject Name: Dynamics of Machines Time: 02:30 pm - 05:00 pm

Total Marks: 70

07

Date: 05-06-2014

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- Q.1 (a) Write a short note on free and forced vibrations giving engineering examples 07 with neat sketches.
 - (b) How the equivalent stiffness of following systems is decided?
 (1)parallel springs (2)series springs (3)geared torsional system.
 Support your answer with neat sketches.
- Q.2 (a) Explain a phase plane method to determine the response of a single degree of 07 freedom system due to sudden disturbance with an example.
 - (b) Write a brief note with related equations on \div Viscous dampingøgiving example. 07 OR
 - (b) What is -Logarithmic decrement ? Explain with related equations and neat 07 sketch.
- Q.3 (a) A reciprocating pump 200 kg is driven through a belt by an electric motor at 3000 rpm. The pump is mounted on isolators with total stiffness 5 MN/m and damping 3.125 kNs/m. Determine the vibratory amplitude of the pump at running speed due to fundamental harmonic force of excitation 1 KN. Also determine the maximum vibratory amplitude when the pump is switched on and motor speed passes through resonant condition.
 - (b) Derive the equations of motions for a machine mounted on elastically 07 supported damper (Voight model) giving free body diagrams.

OR

- Q.3 (a) A 3 tonne machine mounted on isolators with an elastically coupled viscous 07 damper has stiffness K=2.943 MN/m. The damping constant is 56.4 kNs/m and stiffness ratio K/K₁=0.5. The machine develops a harmonic force of 1 KN at an excitation frequency of 7 Hz. (a) Determine its amplitude.(b) Assume that the excitation force remains constant with the operating speed and determine maximum amplitude of machine and corresponding excitation frequency.
 - (b) A two degree of freedom system has two masses m_1 and m_2 tied to the ground 07 through springs K_1 and K_3 respectively and coupled through spring K_2 . Derive equation of motion assuming free undamped vibrations. Show the free body diagrams with neat sketch.

Q.4	(a)	Write a short note on -Degenerated Systemø	07
	(b)	Briefly explain vibration absorber and vibration isolators.	07
		OR	
Q.4	(a)	Write a short note on :Modal analysisø with reference to multi degree freedom system.	07
	(b)	What is Dunkerleyøs method to estimate fundamental frequency of a system?	07
		Explain in brief.	

- Q.5 (a) What is meant by a@ continuous system@? Briefly explain giving examples. How 07 vibrations of such systems are studied?
 - (b) What are the basic elements of a vibration measurement system? Explain with 07 neat sketch.

OR

- Q.5 (a) Sketch the natural frequency mode shapes of beams with various end 07 conditions.
 - (b) Write a short note on -Random vibrations øgiving examples. 07
